Full Length Research Paper

# Pharmacognostic standardization of the stem of *Aerva persica* (Burm.f) Merrill (Amaranthaceae)

Amit Chawla<sup>1</sup>, Payal Chawla<sup>1</sup>\*, Neeru Vasudeva<sup>2</sup>, Surendra K. Sharma<sup>2</sup> and US Baghel<sup>1</sup>

<sup>1</sup>Khalsa College of Pharmacy, Amritsar - 143001 (Punjab), India. <sup>2</sup>Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar-125001, India.

Accepted 11 January, 2013

*Aerva persica (Amaranthaceae)* is hoary-tomentose herb that possesses several biological activities like antiulcer, antimicrobial, hypoglycaemic, diuretic and demulcent. Important details like macroscopic and microscopic examination, physico-chemical parameters and high performance thin layer chromatography (HPTLC) profile of various extracts are presented in this paper. This study revealed that values for total ash, acid insoluble ash, water soluble ash, sulphated ash, swelling index, fibre content, bitterness, extractive values with petroleum ether, chloroform, ethyl acetate, ethanol and water were found to be 6.19, 1.42, 2.45, 6.77, 4%, 27%, 0.869, 0.5%, 1.25%, 11.25%, 2% and 1.75, respectively, are being reported for the first time. The standardisation studies help in the identification of *A. persica* from other *Aerva* species.

Key words: Aerva persica, aflatoxins, Amarantheacae, antiulcer, standardisation.

# INTRODUCTION

Herbal medicines are promising choice over modern synthetic drugs. They show minimum/no side effects and are considered to be safe. Generally, herbal formulations involve use of fresh or dried plant parts. Correct knowledge of such crude drugs is a very important aspect in preparation, safety and efficacy of the herbal product and standardization is a tool in the quality control process (Trease and Evans, 2002). Standardization of herbal medicines is the process of prescribing a set of standards or inherent characteristics, constant parameters, definitive qualitative and quantitative values that carries an assurance of quality, efficacy, safety and reproducibility (Mukherjee, 2002).

Due to globalization, change in manufacturing and dispensing practice, use of synthetic pesticides and fertilizers, polluted climatic conditions, comparison with modern medicines, use of plant ingredient in modern medicine and legal requirements created the need of standardization (Harborne, 1988). A standardised extract means that the manufacturer has verified, this means that the active ingredient believed to be present in the herb, is really present in the preparation and also assured the potency, amount of the active ingredients in the preparation. With the ever-increasing use of herbal medicines and the global expansion of the herbal medicines market, safety has become a major concern (Bersani et al., 2000). Furthermore, the demand of 'readymade extracts' and for this dependence of manufactures on suppliers has necessitated the standardization of single plant drugs and their extracts. A well-defined and constant composition of the drug is therefore, one of the most important prerequisites for the production of a quality drug. World Health Organisation (WHO) Guidelines for Quality Standardized Herbal Formulations (1996a, b, 1992) includes quality control of crude drugs material, plant preparations and finished products, stability assessment and shelf life, safety assessment, documentation of safety based on experience or toxicological studies, assessment of efficacy by ethnomedical information and biological activity evaluations (Aboutabl et al., 1997). Though herbal products have become increasingly popular throughout the world, one of the impediments in its acceptance is the lack of standard quality control

<sup>\*</sup>Corresponding author. E-mail: palamitchawla@gmail.com. Tel: +919357702237.



Figure 1. Aerva persica.



Figure 2. A. persica stem.

profile, so in this direction the standardisation of stem parts of Aerva persica were carried out. A. persica (Burm.f) Merrill (Amaranthaceae) is hoary-tomentose herb, up to 1 m in height (Maclenna et al., 1996). These are widely distributed in Srilanka, Myanamar, Rajasthan, Peninsular India and Gujarat. A. persica has many biological activities like antiulcer (Kushima et al., 2005, Vasudeva et al., 2012), antimicrobial (Chowdhury et al., 2002; Gehlot and Bohra, 1998), immunomodulatory effect (Nevin and Vijayammal, 2003), antidiarrhoeal (Joanofarc and Vamsadhara, 2003), antiplasmodic (Wassel et al., 1997; Simonsen et al., 2001), hypoglycaemic (Vetrichelvan and Jegadeesan, 2002), nephroprotective (Shirwaikar, 2004), antioxidant (Ahmed et al., 2006), diuretic (Majmudar et al., 1999; Vetrichelvan et al., 2000) and demulcent (Zapesochnava et al., 1992), etc. The roots are chewed to form brush for cleaning teeth (Goonaratna et al., 1993). The woolly seeds and stem part are said to relieve headache (Radwan et al., 1999); they are also used against rheumatism (Jaswant et al., 2003). Vernacular names of *A. persica* are: Gujrati-Bur;

Kannad-Dodda; Hindi-Gidda; Tamil-Perumpoolai; Telagu-Magavira; Delhi-Dholimundi; kamheda; Punjabi-Boi kalan; Rajastani-Buida. The major active constituents are alkaloids Canthin-6-one, 10-methoxycanthin-6-one (methylaervin), 10-hydroxycanthin-6-one (aervin), 10- $\beta$ -dglucopyraosyloxycanthin-6-one (aervoside),  $\beta$ -carboline-1-propionic acid, and 6-methoxy- $\beta$ -carboline-1- propionic acid (aervolanin) reported in the roots and aerial parts of *Aerva lanata* (Zapesochnaya et al., 1992) (Figure 1).

# MATERIALS AND METHODS

## Plant

*A. persica* was collected during July from Government Polytechnic, Hisar (Haryana), North India. The plant was taxonomically identified by Dr. H. B. Singh, Head, Raw Materials Herbarium and Museum Division of National Institute of Science Communication and Information Resources (Ref. no. NISCAIR/RHMD/Consult/-2007-08/893/77). The voucher specimen has been deposited in Pharmacognosy Division, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar. The stem pieces were dried and made into powder. Standardisation of stem parts was carried out using standard methodology.

## Preparation of ethanolic and aqueous extracts

500 g of powdered stem was extracted with 1.5 L of ethanol using Soxhlet apparatus for 4 h. Subsequently, 500 g of dried stem powder was boiled with 2.5 L of distilled water for 4 h. These extracts were filtered and the filtrate was evaporated to dryness under reduced pressure at 40 to 50°C and stored at 4°C until use.

# Morphological studies

The dried stem parts were studied for its morphological characters using the appropriate techniques (Evans WC, 2005) (Figure 2).

### **Microscopical studies**

The dried stem was soaked overnight in water to make it smooth enough for transverse section. Paraffin wax embedded specimens were sectioned using the rotatory microtome (Weswox Optik). The thickness of the section was 10 to 12  $\mu$ m. The section was stained with safranin (1%) and light green (0.2%). Slides were mounted in Distyrene, plasticizer and Xylene (DPX) mountant. Photomicrographs were taken using trinocular microscope (Figure 3) (Olympus) (Mukherjee, 2002).

# Histochemical colour reactions

The respective histological colour reactions of transverse section of stem part were done according to khan et al. (1993) and results are shown in Table 1.

## **Powder analysis**

# Microscopy

The powdered drug was bleached with 5% chloral hydrate and

| S/N | Reagent                    | Test for  | Nature of change in histochemical zone | Degree of change |
|-----|----------------------------|-----------|----------------------------------------|------------------|
| 1   | Millon's reagent           | Proteins  | Yellow color                           | +                |
| 2   | lodine solution            | Starch    | Reddish blue                           | +                |
| 3   | FeCl <sub>3</sub> solution | Tannin    | Orange colour                          | +                |
| 4   | Wagner's reagent           | Alkaloids | Dark yellow color                      | -                |

Table 1. Histochemical color reactions of transverse section of stem.

+: Present; -: Absent.



**Figure 3.** Transverse section of the stem. Ph.f: Phloem fibre; P: parenchyma; C: cortex; Pt: pith; XyV: xylem vessels; Ph.p: phloem parenchyma; XyP: xylem parenchyma.

stained with phloroglucinol, concentrated hydrochloric acid and 50% glycerine for microscopical studies (Figure 4).

#### Colour reactions and fluorescence behaviour

Approximately 50 mg of the stem powder was treated with different chemical reagents (Table 2). The powdered drug after treatment was examined under ultraviolet (UV) light (254 and 366 nm) and visible light (Table 3) (Kokoski et al., 1958).

#### Fluorescence analysis

The fluorescence response of different extracts of 25 g powdered stem, namely, petroleum ether, chloroform, ethyl acetate, and ethanol were exposed to visible light, long UV (365 nm) and short UV (254 nm) was studied using the standard procedure (WHO, 1998) (Table 4).

#### **Proximate analysis**

Physico-chemical parameters like ash values, extractive values and moisture content were done (Table 6) (Indian Pharmacopoeia, 1996).

#### Pharmacological studies

The different pharmacological parameters like swelling index in water, foaming index, tannins fraction, bitterness value and hae-



**Figure 4.** Powder study of stem. Ck: Cork cells; E: epidermal cells; P: parenchyma; Pf: phloem fibres; T: trichomes; V: vessles; Xy: xylem fibres.

 Table 2. Behaviour of stem powder with different chemical reagents.

| S/N | Treatment                     | Color           |
|-----|-------------------------------|-----------------|
| 1   | Powder as such                | Light brown     |
| 2   | Powder + 1 N HCI              | Light brown     |
| 3   | Powder + 1 N NaOH             | Brown           |
| 4   | Powder + Acetic Acid          | Greenish brown  |
| 5   | Powder + 5% Ferric chloride   | Brown           |
| 6   | Powder + Picric acid          | Greenish brown  |
| 8   | Powder + 5% lodine            | Yellowish brown |
| 9   | Powder + 1 N HNO <sub>3</sub> | Reddish brown   |

molytic activity on powdered stem was studied according to standard procedures (WHO, 1998) (Table 6).

#### Toxicological parameters

Powdered drug was checked for the determination of arsenic and heavy metals like lead, cadmium and arsenic and the presence of total viable aerobic count, pathogens like *E. coli, Salmonella typhi, Pseudomonas aeruginosa, Staphylococcus aureus* and the presence of aflatoxins was determined by chromatographic methods using standard aflatoxins B<sub>1</sub>, B<sub>2</sub>, G<sub>1</sub>, G<sub>2</sub> mixtures (WHO, 1998; Zapesochnaya et al., 1992) (Tables 5 and 6).

Table 3. Fluorescence nature of stem powder under ultra violet (UV) and visible radiations.

| S/N | Treatment                                                      | Long UV (365<br>nm) | Short UV (254<br>nm) | Visible       |
|-----|----------------------------------------------------------------|---------------------|----------------------|---------------|
| 1   | Powder                                                         | Brown               | Cream                | Light green   |
| 2   | Powder + 1 N HCI                                               | Green               | Light green          | Light brown   |
| 3   | Powder + 1 N NaOH                                              | Greenish brown      | Dark brown           | Brown         |
| 4   | Powder + 50% HNO <sub>3</sub>                                  | Green               | Green                | Reddish brown |
| 5   | Powder + 50% H <sub>2</sub> SO <sub>4</sub>                    | Green               | Green                | Red           |
| 6   | Powder + Methanol                                              | Green               | Green                | Sandy color   |
| 7   | Powder + Acetic acid                                           | Brown               | Light green          | Brown         |
| 8   | Powder + Picric acid                                           | Fluorescent green   | Dark green           | Light brown   |
| 9   | Powder + 1 N NaOH in methanol                                  | Greenish brown      | Brown                | Dark brown    |
| 10  | Powder + 5% FeCl <sub>3</sub>                                  | Brown               | Brown                | Brown         |
| 11  | Powder + 1 N NaOH in methanol + Nitrocellulose in amyl acetate | Brown               | Dark brown           | Rock color    |
| 12  | Powder + 1 N HCl + Nitrocellulose in amyl acetate              | Brown               | Light brown          | Brown         |
| 13  | Powder + 1 N NaOH + Nitrocellulose in amyl acetate             | Rock color          | Dark green           | Rock color    |
| 14  | Powder + Nitrocellulose in amyl acetate                        | Greenish brown      | Greenish brown       | Light color   |
| 15  | Powder + 5% iodine                                             | Greenish brown      | Greenish brown       | Reddish brown |

**Table 4.** Fluorescence nature of different solvent extracts of stem under ultra violet (UV) and visible radiations.

| S/N | Extract         | Long UV (365 nm) | Short UV (254 nm) | Visible         |
|-----|-----------------|------------------|-------------------|-----------------|
| 1   | Petroleum ether | Green            | Green             | Yellow          |
| 2   | Chloroform      | Greenish brown   | Brown             | Green           |
| 3   | Ethyl acetate   | Dark green       | Green             | Light green     |
| 4   | Ethanol         | Greenish brown   | Brownish green    | Brownish yellow |
| 5   | Aqueous         | Black            | Brown             | Blackish brown  |

Table 5. Microbial determination in various extracts.

| S/N | Extract   | Total bacter<br>count | ial Total fungal count | Escherichia<br>coli | Salmonella<br>typhi | Pseudomonas<br>aeruginosa | Staphylococcus<br>aureus |
|-----|-----------|-----------------------|------------------------|---------------------|---------------------|---------------------------|--------------------------|
| 1   | Alcoholic | Within the limits     | -                      | +                   | -                   | -                         | -                        |
| 2   | Aqueous   | Within the limits     | -                      | +                   | -                   | -                         | -                        |

+: Present; -: Absent.

# High performance thin layer chromatography (HPTLC)

About 25 g of alcoholic and aqueous extracts of the stem was first suspended in hot distilled water and then shaken with different solvents in increasing order of polarity, that is, petroleum ether, chloroform, ethyl acetate and methanol in 500 ml of separating funnel. For each extract, that is, petroleum ether (PE), chloroform (Ch), ethyl acetate (EA) and methanol (Me), TLC was performed on silica coated plates to develop a suitable solvent system and then visualised in UV at 254 and 366 nm. The solvent systems for petroleum ether fraction 6:2:1 (PE:EA:Me), for chloroform fraction 25:2 (Ch:Me), for ethyl acetate 100:11:11:27 (EA:FA:AC:Water) and for methanol fraction 2:10:5 (PE:EA:Me). After selecting solvent system for each fraction, HPTLC studies was done by using 10x10 cm of glass plates, CAMAG TLC Scanner3 "Scanner3\_130716

(1.14.26) attached with UV detector of D2 and W lamp with 281 V, second order optical fibre at 366 nm and controlled by win CATS software. HPTLC data and results are shown in Table 7 and Figures 5 to 8.

# **RESULTS AND DISCUSSION**

# Morphology

Stem part is greenish, cylindrical shape and solid with 3 to 7 mm diameter. Outer surface is smooth without any striations. It has brittle fracture with characteristics taste and odour (Figure 2).

| Parameter                       | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bitterness value                | 0.869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Loss on drying (%)              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Swelling index                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Foaming index                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tannins (%)                     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Aflatoxins $(B_1, B_2, G, G_2)$ | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Fibre content (%)               | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Extractive values (%)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| a. Petroleum ether (60-80°C)    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| b. Chloroform                   | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| c. Ethyl acetate                | 11.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| d. Ethanol                      | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| e. Aqueous                      | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ash values (%)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| a. Total ash                    | 6.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| b. Acid insoluble ash           | 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| c. Water soluble ash            | 2.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| d. Sulphated ash                | 6.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Heavy metal concentration (ppm) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| a. Arsenic                      | 0.7159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| b. Cadmium                      | 0.0068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| c. Lead                         | 0.0638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Haemolytic activity             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| b. Ethanolic extract            | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                 | Loss on drying (%)<br>Swelling index<br>Foaming index<br>Tannins (%)<br>Aflatoxins (B <sub>1</sub> , B <sub>2</sub> , G, G <sub>2</sub> )<br>Fibre content (%)<br><b>Extractive values (%)</b><br>a. Petroleum ether (60-80°C)<br>b. Chloroform<br>c. Ethyl acetate<br>d. Ethanol<br>e. Aqueous<br><b>Ash values (%)</b><br>a. Total ash<br>b. Acid insoluble ash<br>c. Water soluble ash<br>d. Sulphated ash<br><b>Heavy metal concentration (ppm)</b><br>a. Arsenic<br>b. Cadmium<br>c. Lead<br><b>Haemolytic activity</b><br>a. Aqueous extract |

Table 6. Physico-chemical parameter of the stem of A. persica.

# **Microscopical characters**

The outermost layer consisted of 2 to 3 layers of flattened cork cells. Below the cork, six to seven layers of normal parenchymatous cells of the cortex were observed. The phloem lied externally, composed of parenchymatic cells and fibres. The xylem vessels were observed in few radial rows. The smaller vessels constituting the protoxylem lied towards the centre and the bigger ones constituting the metaxylem lied away from the centre. The xylem parenchyma was observed surrounding the xylem vessels. The pith consisted of polygonal thin walled cells with conspicuous inter cellular spaces (Figure 3).

# Powder analysis

# Microscopy

The powder of the stem showed the presence of phloem fibres, isodiametric cork cells, and normal parenchyma

cells (Figure 4).

# Histochemical tests

The sections of stem treated with different reagents showed the presence of proteins, starch, tannins and alkaloids.

# Physicochemical studies

The physicochemical constants such as ash values showed total ash of 619 and water soluble ash of 1.42

# Conclusion

The pharmacognostic standardization for the stem part of *A. persica* is laid down for the first time in this study. Morphological and anatomical studies of the stem will

| S/N  | Name of the Extractives | Adsorbent  | Spot No. | Stem values          |          |
|------|-------------------------|------------|----------|----------------------|----------|
| 3/11 | Name of the Extractives |            |          | R <sub>f</sub> value | Area (%) |
|      | Petroleum ether         |            | 1        | 0.10                 | 83.17    |
|      |                         |            | 2        | 0.61                 | 1.80     |
|      |                         |            | 3        | 0.71                 | 2.45     |
| 1    |                         | Silica gel | 4        | 0.87                 | 3.42     |
|      |                         |            | 5        | 0.99                 | 1.31     |
|      |                         |            | 6        | 1.23                 | 3.80     |
|      |                         |            | 7        | 1.35                 | 4.06     |
|      |                         |            | 1        | -0.47                | 61.23    |
|      |                         |            | 2        | -0.03                | 10.41    |
|      |                         |            | 3        | 0.14                 | 5.39     |
|      | Chloroform              |            | 4        | 0.33                 | 3.67     |
| 0    |                         | Silica gel | 5        | 0.44                 | 10.00    |
| 2    |                         |            | 6        | 0.71                 | 2.86     |
|      |                         |            | 7        | 0.86                 | 1.14     |
|      |                         |            | 8        | 1.42                 | 1.56     |
|      |                         |            | 9        | 1.64                 | 2.42     |
|      |                         |            | 10       | 1.91                 | 1.32     |
|      | Ethyl acetate           | Silica gel | 1        | 0.01                 | 32.58    |
|      |                         |            | 2        | 0.15                 | 7.96     |
| ~    |                         |            | 3        | 0.25                 | 14.44    |
| 3    |                         |            | 4        | 0.57                 | 18.85    |
|      |                         |            | 5        | 0.82                 | 11.40    |
|      |                         |            | 6        | 1.09                 | 18.78    |
|      | Methanol                | Silica gel | 1        | -0.05                | 50.34    |
|      |                         |            | 2        | 0.15                 | 37.87    |
| 4    |                         |            | 3        | 0.60                 | 5.78     |
|      |                         |            | 4        | 0.76                 | 6.02     |

 Table 7. HPTLC data of various extracts of A. persica stem.

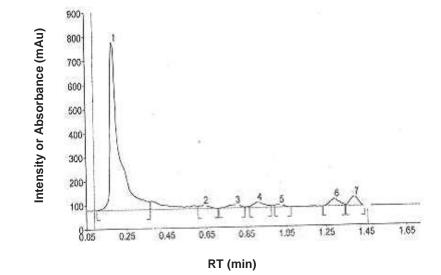



Figure 5. HPTLC profile of petroleum ether extract of stem of A. persica.

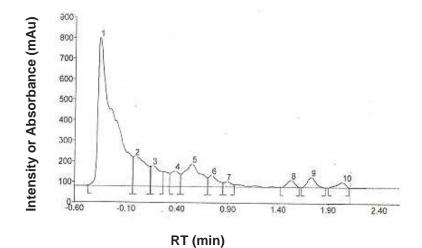
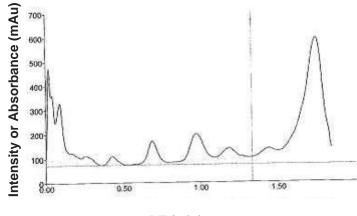
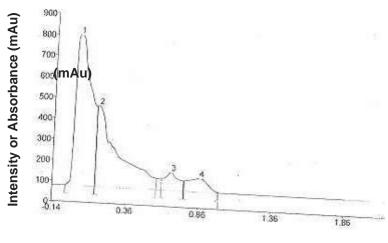





Figure 6. HPTLC profile of chloroform extract of stem of A. Persica.



RT (min)

Figure 7. HPTLC profile of ethyl acetate extract of stem of A. persica.



RT (min)

Figure 8. HPTLC profile of methanol extract of stem of A. persica.

enable the identification of crude drug. The information obtained from HPTLC studies will be useful in finding out the genuity of the drug. Ash values, extractive values, bitterness values, aflatoxin analysis, tannin, foaming and swelling index, and heavy metal detection can be used as reliable aid for detecting adulteration. These are simple, but reliable standards will be useful to a layperson in using the drug as a home remedy. Also, the manufacturers can utilize them for identification and selection of the raw material for drug production.

## ACKNOWLEDGEMENTS

The authors are thankful to the Chairman, Guru Jambheshwar University of Science and Technology, Hisar for providing facilities to carry out this work and they are also thankful to the Principal, Khalsa College of Pharmacy, Amritsar for providing the necessary facilities for the preparation of the paper.

#### REFERENCES

- Aboutabl EA, Wassel GM, Wahab SMA, Ammar NM, Yassin N (1997). Study of different carbohydrates in *Aerva lanata* Juss Ex schult and *A. javanica* Burm. Fill. growing in Egypt and evaluation of hypoglycaemic effect of their polysaccharides. Egypt J. Pharm. Sci. 38:38-42.
- Ahmed E, Imran M, Malik A, Ashraf M (2006). Antioxidant activity with flavonoidal constituents from *Aerva persica*. Arch Pharm. Res. 29:343-347.
- Bersani ACA, Massao LB, Baggio SR, Johanson L, Albeiro ALM, Kimura E (2000). Antiulcer effectiveness of *Maytenus aquifolium* spray dried extract. Phytother Res. 14:543-545.
- Chowdhury D, Sayeed A, Islam A, Bhuiyan MSA, Khan GRMAM (2002). Antimicrobial activityand cytotoxicity of *Aerva lanata*. Fitoterapia. 73:92-94.
- Gehlot D, Bohra A (1998). Antimicrobial activity of various plant parts extracts of *Aerva persica*. Ad Plant Sci. 11:109-111.
- Goonaratna C, Thabrew I, Wijewardena K (1993). Does Aerva lanata have diuretic properties?. Ind. J. Physiol. Pharmacol. 37: 135-137.
- Harborne JB (1988). Phytochemical methods. A guide to modern techniques of plant analysis. Chapmann and Hall. London, pp. 10-34.
- Indian Pharmacopoeia (1996). Ministry of Health and Family Welfare. Controller of Publication. New Delhi, India.
- Jaswant B, Ragunathan V, Sulochana N (2003). A rare flavonol glycoside from *Aerva tomentosa* Forsk as antimicrobial and hepatoprotective agent. Indian J. Chemistry. 42:956-958.
- Joanofarc J, Vamsadhara C (2003). Evaluation of antidiarrhoeal activity of *Aerva* species. Nat. Prod. Sci. 9:177-179.
- Khan N, Uzzafar M, Khan AU (1993). Pharmaco-anatomical evaluation of bark of *Cordia myxa* and *Emblica officinalis*. Glimpses in plant research. Today and tomorrow's printers and publishers, New Delhi. 10:181-187.
- Kokoski CJ, Kokoski RJ, Salma FJ (1958). Flourescence of powdered vegetable drugs under UV radiation. J. Am. Pharm. Assoc. 47: 715-717.

- Kushima H, Hiruma LCA, Santos MA, Viana E, Coelho FM, Brito A (2005). Gastroprotective activity of *Pradosia huberi* on experimentally induced lesions in rodents: Role of endogenous sulphydryls and nitric oxide. J. Ethnopharmacol. 101:61-67.
- Maclenna AH, Wilson DH, Taylor AW (1996). Prevalence and cost of alternative medicine in Australia. Lancet. 347:569-572.
- Majmudar FI, Shah MB, Patel KN, Shah BK (1999). *Aerva lanata* It's diuretic and hepatoprotective activity. Indian J. Nat. Prod. 15: 9.
- Mukherjee PK (2002). Quality control of herbal drugs. An approach to evaluation of botanicals. Business Horizons Pharmaceutical Publishers, New Delhi, India.
- Nevin KG, Vijayammal PL (2003). Pharmacological and immunomodultory effects of *Aerva lanata* in Daltons Lymphoma Ascites-Bearing mice. Pharmaceut. Biol. 43:640-646.
- Radwan HM, Nazif NM, Hamdy AA (1999). The lipid and flavonoidal constituents of *Aerva javanica* (var.bovi) Webb in Hook. F. and their antimicrobial activity. Egypt J. Pharm. Sci. 40: 167-178.
- Shirwaikar A, Issac D, Malini S (2004). Effect of *Aerva lanata* on cisplatin and gentamicin models of acute renal failure. J. Ethnopharmacol. 90:81-86.
- Simonsen HT, Nordskjold JB, Smitt UW, Nyman U, Palpu P, Joshi P, Varughese G (2001). Invitro screening of Indian medicinal plants for antiplasmodial activity. J. Pharmacol. 74:195-204.
- Trease GE and Evans WC, Pharmacognosy (2005). Harbcourt publishers Ltd., W.B. Saunders Company Ltd., 15:95-96.
- Vasudeva N, Sethi P, Sharma SK, Kumar S, Sharma S (2012). Antiulcer potential of the ethanolic extract of *Aerva Persica* Merrill root in rats. J. Acupunct. Meridian. Stud. 5(2):80-86.
- Vetrichelvan T, Jegadeesan M (2002). Antidiabetic activity of alcoholic extract of *Aerva lanata* (L.) Juss. Ex Schultes in rats. J Pharmacol. 80103-107.
- Vetrichelvan T, Jegadeesan M, Senthil PM, Murali NP, Sasikumar K (2000). Diuretic and anti-inflammatory activities of *Aerva lanata* in rats. Indian J. Pharm. Sci. 62:300-302.
- Wassel GM, Wahab SMA, Aboutabl EA, Ammar NM, Yassin N. (1997). Egypt J. Pharm. Sci. 38:43.
- WHO (1998). Research guidelines for evaluating the safety and efficacy of herbal medicine. World Health Organisation. Geneva.
- Zapesochnaya G, Kurkin V, Okhanov V, Miroshnikov A (1992). Canthin-6-one and  $\beta$ -carboline alkaloids from *Aerva lanata*. Planta Med. 58:192-196.