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In this study, we investigated the promising potential of Anadenanthera colubrina bark extract (BEAc) 
as a product to combat diabetes mellitus (DM). We evaluated the inhibitory effects of BEAc on α-
glucosidase and the oxidation of biomolecules, as well as its main phytoconstituents. In terms of free 
radical scavenging, BEAc exhibited a dose-effect relationship. BEAc was more efficient than rutin and 
butylated hydroxytoluene and similar to ascorbic acid at the same concentrations. Evaluation of the IC50 

confirmed the good activity of BEAc compared to positive controls and statistically determined to be 
equal to ascorbic acid. In in vitro α-glucosidase inhibition studies, BEAc generated 31 times more 
potent inhibition than acarbose and was dose-dependent at the concentrations tested. Lineweaver-Burk 
and Michaelis-Menten plots obtained for kinetic analysis showed that BEAc competitively inhibited the 
α-glucosidase catalyzed reaction. Chemical analysis of BEAc by HPLC revealed that the plant is rich in 
phenolic compounds and confirmed its capacity to inhibit α-glucosidase. Fourteen compounds were 
identified by reference to authentic standards: Gallic acid, catechin, syringic acid, chlorogenic acid, p-
coumaric acid, naringin, vitexin, rutin, isorhamnetin, hesperidin, myricetin, morin, rosmarinic acid, and 
quercetin. Thus, this study provides the first evidence of the antidiabetic activity of A. colubrina bark 
and determines its possible modes of action on carbohydrate metabolism via inhibition of α-
glucosidase and the control of biomolecule oxidation. These data support the potential use of this plant 
for the development of promising multi-target therapy products combining postprandial hyperglycemia 
control and biomolecule oxidation control. 
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INTRODUCTION 
 
Diabetes mellitus (DM) is a chronic disease resulting from the progressive  disorder  of the production or functioning  
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of the pancreatic hormone insulin, triggering impaired 
regulation of carbohydrate and lipid metabolism and 
leading to increased blood glucose levels (Ramu et al., 
2014a). The main complications of this disease are 
chronic hyperglycemia, weight loss, polydipsia, polyuria, 
lethargy, and various macrovascular and microvascular 
complications (Kidane et al., 2018). 

The influence of the α-glucosidase enzyme on DM has 
been well documented. The enzyme converts long chain 
carbohydrates into simpler monosaccharide units, a 
process that allows for rapid absorption of carbohydrates 
resulting in high glucose levels in the blood. This is 
characterized as postprandial hyperglycemia, the earliest 
symptom of DM. Therefore, suppression of carbohydrate 
absorption by enzymatic inhibition is an important 
approach to prevent DM (Ramu et al., 2014b). In fact, the 
use of inhibitors of these hydrolases is widely accepted 
as an efficient method to maintain normal blood glucose 
levels (Ramu et al., 2017); thus, several synthetic α-
glucosidase inhibitors, such as acarbose, voglibose, and 
miglitol, are administered to diabetic patients (Banu et al., 
2015; Ramu et al., 2017). However, these inhibitors have 
some restrictions of use, as they may cause adverse 
reactions, such as liver disorders, flatulence and 
abdominal cramps (Liu et al., 2014; Ramu et al., 2017). 
To circumvent these problems, many studies with 
medicinal plants are underway (Kapoor et al., 2017), 
especially those plants that already have a long history of 
use, as this favors the development of safe products and 
is a low-cost option (Soares et al., 2017). 

The Anadenanthera colubrina (Vell.) Brenan plant 
belongs to the Mimosoideae section of the Fabaceae 
family, and is a botanical species with medicinal 
properties. It is administered orally, prepared by 
decoction, infusion or in the form of juice obtained after 
the maceration of leaves or other parts of the plant (Agra 
et al., 2008). Its barks are used for the treatment of 
inflammation, and respiratory diseases, and the leaves 
are used to treat anemia, inflammation and some cancers 
(Agra et al., 2008; Albuquerque et al., 2014). However, 
regarding the pharmacological potential of the secondary 
metabolites of A. colubrina, no studies have been found 
that evaluate the action of its main chemical constituents 
against DM. This demonstrates the need for further 
research on stem barks that are used by populations. In 
addition, studies on the chemical constitution of this plant 
have revealed a composition that is promising for the 
fight against DM, being rich in catechins, flavonoids, 
phenols, saponins, steroids, tannins, triterpenes, and 
xanthones (Santos et al., 2013; Melo et al., 2010). 

Considering the use of the plant for medicinal purposes 
(Agra et al., 2008; Albuquerque et al., 2014; Santos et al., 

 
 
 
 
2013) and the incidence of this plant in several Brazilian 
states (Lorenzi, 2009), this paper forms part of an initial 
strategy for the development of antidiabetic herbal 
products in the Amazon region from A. colubrina. 
Therefore, the objective of the present work is to evaluate 
the potential of the extract of A. colubrina bark as an 
inhibitior of α-glucosidase and as an antioxidant as a 
prospect for the development of antidiabetic products. 
 
 
MATERIALS AND METHODS 
 
Plant material 
 
The A. colubrina bark was collected from the city of Porto Nacional 
State of Tocantins, Brazil (Geographic coordinates: -10.182406 "S, 
-48.459146" W) in October 2017. The plant was authenticated by 
the botanist of the herbarium of the Federal University of Tocantins 
in Porto Nacional, and a voucher specimen was deposited in the 
herbarium with the number HTO 1200. The collection of the plant 
material was conducted under authorization National System for the 
Management of Genetic Heritage and Associated Traditional 
Knowledge (SISGEN) (process number A7EB8D7). 
 
 
Preparation of extracts 
 
To obtain the A. colubrina bark extracts (BEAc), the method of 
Soares et al. (2017) was used.  Therefore the plant material (20 g 
of powder) was extracted 5 times for one hour each time with a 
mixture of methanol-acetonitrile (80/20) in an ultrasound bath 
(USC1600, ULTRASONIC CLEANER, UNIQUE, São Paulo, Brazil) 
with a frequency of 40 kHz (135 W) at room temperature. The 
extraction solutions obtained by ultrasound were combined, 
vacuum filtered, and concentrated in the rotary evaporator at -600 
Hg, 70 RPM, and 50°C. BEAc extracts were lyophilized and stored 
under vacuum conditions in the desiccator until analysis.  

 
 
DPPH antiradical scavenging activity 

 
The 1,1-diphenyl-2-picrylhydrazyl acid (DPPH) assay followed the 
description of Peixoto-Sobrinho et al. (2011). Briefly, six dilutions 
(ranging from 10 to 250 μg/mL in methanol) of samples or positive 
control substances (rutin, butylated hydroxytoluene, and ascorbic 
acid, all from Sigma-Aldrich) were prepared. An aliquot (0.5 mL) of 
each dilution was mixed with DPPH (3 mL at 40 µg/mL in 
methanol). A blank was prepared, replacing the DPPH solution with 
methanol, to compare the color of the extractive solution with the 
reaction of the test. After 30 min the absorption was measured at 
517 nm. The percentage removal of the DPPH radical was 
calculated from the absorption using the following equation: 
 
AA (%) = [(A0 - (Asample - Ablank)) / A0] × 100 
 
Where AA is the antioxidant activity, Asample is the absorption of the 
sample, Ablank is the absorption of the blank and A0 is the absorption 
of DPPH at 40 μg/mL without sample. By linear regression, the IC50 
value was also  calculated,  determining  the  sample  concentration 
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required to decrease the absorption at 517 nm by 50%. The IC50 
was expressed in μg/mL. 
 
 

Alpha-glucosidase inhibitory assay 
 

The α-glucosidase inhibitory assay for BEAc was evaluated 
according to a previously described method by Ramu et al. (2014). 
In brief, 0.20 µl of BEAc with varying concentrations (10-200 µg/mL) 
dissolved in dimethyl sulfoxide (DMSO) was mixed with 106 µl of 
sodium phosphate buffer (pH 6.8) and 54 µl of α-glucosidase 
solution (0.18 U/mL). This mixture was incubated at 37°C for 10 
min, then cooled at 21°C for 5 min and mixed with 20 μL of p-
nitrophenyl-α-D-glucopyranoside (pNPG) 4 µM solution in sodium 
phosphate buffer (pH 6.8). The reaction was maintained at 37°C for 
20 min. The reaction was terminated by adding 100 μl 0.2 M 
Na2CO3. Enzyme activity was determined by measuring the 
absorption of the liberated p-nitrophenol from pNPG at 405 nm 
using a microplate reader (Biochrom ASYS UVM 340, Holliston, 
USA). The absorption was compared with the blank, containing 
buffer instead of a test sample. To evaluate the decrease in 
absorption, a positive control was prepared with all reagents without 
the sample. Acarbose was used as a positive control. The results 
were expressed as percentage α-glucosidase inhibition obtained 
using the formula given below: 
 

Inhibition (%) = [(Acontrol- (Asample - Ablank)) / Acontrol] × 100 
 

The IC50 value was calculated by linear regression, determining the 
sample concentration required to decrease the absorption at 405 
nm by 50%. The IC50 was expressed in μg/mL. 
 
 
Kinetics of alpha-glucosidase inhibition 
 
The enzyme kinetics of the inhibition of α-glucosidase activity by 
BEAc was studied using concentrations of substrate against IC25 
and IC50 inhibitory concentrations of the BEAc. The type of 
inhibition, Km, and Vmax were determined by a double reciprocal 
Lineweaver-Burk plot of the substrate concentration and the 
velocity (1/V versus 1/[pNPG]) (Ramu et al., 2014). 
 
 
Phytochemical analysis 
 

Preliminary phytochemical analysis 
 

Preliminary phytochemical analysis of the BEAc was carried out for 
detection of the presence of the major classes of phytochemicals, 
such as alkaloids, flavonoids, phenolic compounds, tannins, 
saponins and steroids, following standardized methods (Matos, 
2009). 
 
 
High performance liquid chromatography analysis (HPLC) 

 
BEAc extracts were analyzed by HPLC using a Shimadzu® 
chromatograph (Shimadzu®, Kyoto, Japão) equipped with LC-10AT 
pump, DGU-14A degasser, UV-vis SPD-10A detector, CTO-10A 
column oven, Rheodyne manual injector (loop 20 μl) and a CLASS 
SLC-10A integrator. The column used was the Phenomenex Luna 
C18 5 μm (250 mm × 4.6 mm) column with direct-connect C18 
Phenomenex Security Guard Cartridges (4 × 3.0 mm

2
) filled with 

similar material as the main column at 22°C. UV detection was 
carried out at 280 nm. The response of the detector was recorded 
and integrated using Class-VP software. The mobile phase 
consisted of 0.1% phosphoric acid in water (phase A) and 0.1% 
phosphoric acid in water/acetonitrile/ methanol (54:35:11 v/v) 
(phase B) under the following gradient profile: 0-5 min, 0%  B;  5-10   
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min, 30% B, 10−20 min, 40% B, 20-60 min 40% B, 60-70 min 50% 
B, 70-90 min 60% B, 90-100 min 80% B, 100–110 min 100% B. 
110-120 min 100% B. The flow rate was 1.0 mL/min. The 
compounds were identified by comparing the retention times of 
samples and authentic standards such as gallic acid, catechin, 
syringic acid, chlorogenic acid, p-coumaric acid, naringin, vitexin, 
rutin, isorhamnetin, hesperidin, myricetin, morin, rosmarinic acid 
and quercetin (Sigma®). Before the analysis, all the extracts (at 1 
mg/mL) and authentic standards (0.18 mg/mL) were filtered through 
0.20 μm membrane filters of polyvinylidenedifluoride. 
 
 
Statistical analysis 
 
All experiments were carried out in triplicate and data were 
analyzed by Microsoft Excel 2013 using the non-linear regression 
analysis-aided determination of IC50.The analytical data were also 
subjected to an analysis of variance (ANOVA) followed by Tukey’s 
test using Prism software (GraphPad prism software version 8.0, 
USA). 
 
 

RESULTS 
 

Antioxidant activity 
 

The scavenging capacity of BEAc on DPPH free radicals, 
shown in Figure 1, exhibited a dose-effect relationship, 
increasing with increasing extract concentration. BEAc 
was more efficient than rutin and BHT and was similar to 
ascorbic acid at the same concentrations. As shown in 
Table 1, the IC50 assessment confirmed the good activity 
of BEAc comparing with the positive controls, being 
statistically equal to ascorbic acid. 
 
 

Alpha-glucosidase inhibitory assay 
 

The in vitro α-glucosidase inhibitory assay showed that 
BEAc exhibited a potent inhibition of glucosidase, with 
IC50 values (19.04 µg/mL) 31 times more potent than 
acarbose (positive control, IC50 = 600 mg/mL). The 
maximum inhibition found for the BEAc to be 94.2% at a 
concentration of the 210 ug/mL against 88.7% for the 
acarbose in the concentration of 0.9 mg/mL (Figure 2). 
 
 

Kinetics of alpha-glucosidase inhibition 
 

The Lineweaver-Burk and Michaelis-Menten plots 
obtained for the kinetic analysis are in Figure 3A to D. 
The results established that BEAc competitively inhibits 
the reaction catalyzed by α-glucosidase. The enzyme 
kinetic curve fit calculations indicated that Km decreased 
with higher BEAc concentrations, but there was no effect 
on Vmax. 
 
 

Phytochemical analysis 
 

Preliminary phytochemical analysis 
 

A  preliminary  phytochemical  analysis  of  the  bark of A. 
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Figure 1. Percentage of inhibition of DPPH radical by A. colubrina bark extract and the positive 
controls ascorbic acid, rutin and butylated hydroxytoluene (BHT). 

 
 
 

Table 1. IC50 of DPPH inhibition by A. colubrina barks extract and 
the positive controls ascorbic acid, rutin and butylated 
hydroxytoluene (BHT). 
 

Sample IC50 DPPH (μg/mL) 

Extract 27.97 ± 0.60
a
 

Rutin 44.74 ± 0.80
b
 

A. Acid 25.13 ± 1.04
a
 

BHT 46.79 ± 1.96
c
 

 

Values are represented as mean ± SD of triplicates. Values 
followed by the same letter show no significant differences. 
Comparing the data of ascorbic acid, BHT and rutin with the 
extract, P <0.01 is verified by Tukey test. 

 
 
 
colubrina (BEAc) revealed the presence of phenolic 
compounds, flavonoids, flavonols, flavones, tannins, and 
Phytosterols. 
 
 
High performance liquid chromatography – HPLC 
analysis  
 
Chemical analysis of BEAc revealed that it is rich in 
phenolic compounds. The chromatograms are shown in 
Figure 4. The diverse compounds detected had retention 
times (rt) ranging from 15 to 80 min. We identified 
fourteen compounds by referring to the standards, 
namely gallic acid (rt = 15.5), catechin (rt = 22.0), syringic 
acid  (rt = 24.1),  chlorogenic acid  (rt = 25.2),  p-coumaric 

acid (rt = 27.8), naringin (rt = 31.6), vitexin (rt = 37.1), 
rutin (rt = 42.7), isorhamnetin (rt = 56.5), hesperidin (rt = 
61.6), myricetin (rt = 65.3), morin (rt = 66.9), rosmarinic 
acid (rt = 68.4), and quercetin (rt = 74.9). 
 
 
DISCUSSION 
 
Antioxidant activity 
 
A. colubrina has been reported as a plant rich in 
antioxidant (Weber et al., 2011) compounds, mainly 
phenolic compounds (Melo et al., 2010). The radical 
scavenging activity of the extract evaluated against the 
stable free radical DPPH  increased  with  increases in its  
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Figure 2. Inhibitory effect of A. columbrina (A) and Acarbose (B) bark extract (5 - 200 µg/mL) 
on α-glucosidase activity. Inhibition was calculated using pNPG (2 mM) and expressed as 
µg/mL. 

 
 
 
concentration (Figure 1). Antioxidant activity of plant 
extracts is primarily derived from secondary metabolites, 
which exhibit synergistic interactions giving the plant 
different biological roles (Selamoglu et al., 2018). Gobbo-

Neto and Lopes (2007) highlight that secondary 
metabolites represent a chemical interface between 
plants and the environment, with syntheses that are 
frequently  affected   by   environmental   conditions.  The  
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Figure 3. Modes of inhibition of [alpha]-glucosidase by acarbose (A and B) and shell extract of A. colubrina (C 
and D). (A and C) Lineweaver-Burk plots, (B and D) Michaelis-Menten plots. 

 
 
 
results of this work clearly demonstrate this aspect. The 
collected sample was from a specimen from the Cerrado 
of Tocantins State. However, Melo et al. (2010) showed 
that, in contrast to our study, a different potential is 
observed regarding the capacity to sequester free 
radicals in specimens collected in the northeastern semi-
arid region a different potential is observed regarding the 
capacity to sequester free radicals. It is worth noting that 
in their work, the authors demonstrated that the species 
A. colubrina is among the plants with the best antioxidant 
activity from the Brazilian northeastern semi-arid region 
and established a form of classification for the antioxidant 
activity, based on the performance of the crude extract of 
plants in sequestering free radicals in vitro: I - good 
activity (IC50 with values up to three times the efficient 
concentration of the positive control), II - moderate 
activity (IC50 ranging between three and seven times the 
inhibitory concentration of the positive control), III - low 
activity (IC50, seven times the inhibitory concentration of 
the positive control). By this classification, A. colubrina 
had a moderate antioxidant activity when collected in the 
northeastern semiarid region, while in the  present  study, 

following the same criteria, the plant collected in the 
Cerrado of Tocantins presented good antioxidant activity. 

Synthetic antioxidants have been used by the food 
industry to delay or prevent lipid oxidation (Anwar et al., 
2018). However, consumer demand and food safety risks 
have suggested replacing them with alternative natural 
antioxidants (Berdahl et al., 2010). Natural antioxidants, 
including flavonoids and phenolic acids, are extracted 
primarily from plant sources. It is important to note that 
these antioxidants not only preserve food but also have 
the potential to protect the human body from various 
diseases induced by free radicals, such as cancer and 
diabetes (Sudhakaran et al., 2019; Sak, 2017; Nde et al., 
2015). In this study, we found that A. colubrina peels 
have a great potential for application to this purpose 
because the IC50 value obtained with the extract was 
more efficient than the synthetic standards tested, BHT 
and rutin, and statistically equal to ascorbic acid. 

According to Choi et al. (2015) the evaluation of 
antioxidant activity is an integral part of the screening of 
potential antidiabetic resources. This aspect was clearly 
observed  in the present work. The extract of A. colubrina  
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Figure 4. High-performance liquid chromatography (HPLC) fingerprint of the shell extract of A. colubrina detected 
at 280 nm. 

 
 
 
had a remarkable inhibitory effect on α-glucosidase and 
this was dose-dependent, being more efficient than 
acarbose, a known α-glucosidase inhibitor currently used 
for the treatment of diabetic patients. The IC50 data 
indicated that the extract is 31 times more potent than 
this synthetic standard. When we compare the data 
obtained in this work with those of Doan et al. (2018), 
developed with the stem bark extract of Chrysophyllum 
cainite L., we find that the strong antioxidant activity 
exhibited by plant extracts is strongly related to the potent 
ability to inhibit the action of  α-glucosidase. In  fact,  both 

the work of Doan et al. (2018) and our current study have 
demonstrated a good strong inhibition of α-glucosidase 
which occurred parallel to a good antioxidant activity, 
regardless of the differences in the plants. 
 
 
Antidiabetic activity 
 
Glucosidase has been recognized as a therapeutic target 
for the modulation of postprandial hyperglycemia (Banu 
et al., 2015),  a  primary  risk factor in the development of  
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type 2 diabetes mellitus (Liu et al., 2014). At the same 
time, the fight against oxidative stress is closely related to 
the control of both DM and various medical conditions, 
including aging, atherosclerosis, cancer, and 
neurodegenerative disorders (Chen et al., 2018; 
Sudhakaran et al., 2019). As the data obtained indicate 
that A. colubrina bark has an efficient action on both 
oxidative stress and carbohydrate metabolism, it is a 
promising product for multi-target therapy combining 
control of postprandial hyperglycemia and control of 
oxidation of biomolecules among other functions. 

Several methods of glucose inhibition have been 
proposed for extracts of medicinal plants used in the 
treatment of diabetes mellitus (Ramu et al., 2014; Sheliya 
et al., 2016; Wang et al., 2019; Bhatia et al., 2019). 
However, none was previously postulated for A. 
colubrina. In this study, the Lineweaver-Burk plot plotted 
from the kinetic data has generated new information 
about this new biological role of this plant. The plot 
indicated that the extract is a competitive inhibitor of α-
glucosidase competing directly with the substrate of the 
α-glucosidase, thus inhibiting the reaction. This is a 
strong biochemical reason for A. colubrina bark to be 
used in diabetes treatment in the future. Furthermore, A. 
colubrina bark has the potential to be used as an 
antidiabetic product both in the direct version and in 
components with synthetic products for deleterious 
effects. 

Phytochemicals from A. colubrina extract have been 
the subject of several studies. The main classes of 
compounds already described for the species are 
flavonoids, phytosterols, and tannins (Weber et al., 2011; 
Santos et al., 2013). The preliminary results of the 
phytochemical analysis of BEAc in our study are 
consistent with the literature description for this plant. 
Information on the chemical composition of BEAc 
obtained by HPLC analysis confirmed its capacity as an 
inhibitor of α-glucosidase. The classes of compounds 
found in the bark of A. colubrina contained substances 
capable of acting synergistically in different biological 
roles. For the activities evaluated here, the extract of A. 
colubrina proved to be very efficient, indicating that it is a 
source of a wide range of substances that act 
simultaneously on the oxidation of biomolecules and the 
metabolism of carbohydrates, with a significant 
contribution from phenolic compounds.  

In HPLC analysis, comparison of the retention time of 
the detected peaks with that of the authentic standards 
led to the identification of tannins, phenolic acids, 
catechins, and flavonoids. Scientific evidence on the 
performance of the compounds identified (gallic acid, 
catechin, syringic acid, chlorogenic acid, naringin, vitexin, 
rutin, isorhamnetin, hesperidin, myricetin, morin, 
rosmarinic acid and quercetin) in human metabolism are 
consistent with the results found on the biological 
activities evaluated in the present study. In addition, it 
has been shown  that  the  use  of  aortic  stenosis  in  the 

 
 
 
 
treatment of postprandial hyperglycemia has been shown 
to inhibit α-glucosidase (Srinivasan et al., 2014; Zhu et 
al., 2014; Zeng et al., 2016; Arumugam et al., 2016; 
Ahangarpour et al., 2019). 

In continuation of the effort to investigate the biological 
effects of the phytoconstituents of A. colubrina bark 
extract, we verified that the compounds identified in the 
HPLC analysis can act on several factors related to 
diabetes mellitus. Gallic acid and p-coumaric acid are 
believed to be effective against diabetes mellitus, both in 
early stages and in disease progression. Abdel-Moneim 
et al. (2017) have shown that these compounds can 
significantly improve glucose tolerance and reduce 
cerebral oxidative stress, being able to act against 
neurodegeneration in diabetics. Quercetin is able to 
protect the body against oxidative stress and glycemic 
control (Carrasco-Pozo et al., 2016). Rutin can inhibit α-
glucosidase and reduce glucose uptake in the small 
intestine, as well as inhibiting intracellular pathways 
responsible for diabetic complications (Ghorbani, 2017), 
while catechins, in addition to inhibiting α-glucosidase in 
intestinal microvilli (Matsui, 2015), can also be 
transformed by bacteria that colonize the human intestine 
into metabolites of remarkable antioxidant activity and 
high bioavailability (Santangelo et al., 2019). Hesperidin 
and myricetin have an inhibitory effect on the 
development of neurodegenerative diseases (Hajialyani, 
2019; Ben-Azu et al., 2019). It is important to note that 
other biological activities have already been 
demonstrated for this plant; the compounds identified 
may provide benefits other than those reported here, and 
not all peaks have been identified by the method applied. 
So, further research may expand the pharmacological 
spectrum of this plant. 
 
 

Conclusions 
 

This study provides the first evidence of the activity of A. 
colubrina bark, showing a possible mode of action on 
carbohydrate metabolism via inhibition α-glucosidase and 
the control of biomolecule oxidation. These data support 
the potential use of this plant for medical conditions 
related to diabetic complications and the development of 
promising products for multi-target therapy combining the 
control of postprandial hyperglycemia and the control of 
the oxidation of biomolecules. 
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