Full Length Research Paper

Molecular dynamics, Monte Carlo and DFT studies of boron-nitride nano cones: properties investigating B₁₀N₁₁H₇ (Thr)₂ in different temperatures and solvents

F. Mollaamin¹, N. Hooshmand² and M. Monajjemi¹*

¹Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran. ²Science and Research Branch, Islamic Azad University, Tehran, Iran.

Accepted 16 March 2011

Quantum Monte Carlo (QMC), Molecular Dynamics (MD) simulations and Density Functional Theory (DFT) calculations at the level of B3LYP/3-21G carried out on the structure and stability of $B_{10}N_{11}H_7$ (Thr)₂ in bulk and different solvent medium. NMR parameters and thermodynamic properties were calculated to obtain chemical shift, stability and solvent effect. It was found that computationally efficient solvent modeling is possible and can reveal fine details of molecular structure, stability and dynamics. The results showed high stability of $B_{10}N_{11}$ nanocone, it can be the best candidate and much favorable in biological systems and drug delivery.

Key words: Molecular dynamics simulations, solvent effect, DFT, B₁₀N₁₁H₇(Thr)₂, nanocone, Monte Carlo.

INTRODUCTION

Most of the studies have been done on carbon nanotubes (lijima, 1991; lijima and Ichihashi, 1993; Bethune et al., 1993) and C60 (Kroto et al., 1985) since they have been discovered. Many novel structures such as carbon nanocones and boron nitride nanocones have been viewed as intermediate between nanotubes and graphene sheet (Sattler, 1995; Zhi et al., 2005).

Because of their unique properties than those of carbon structure, in recent years there has been a great interest in studying the properties of the nanocones by scientist (lijima et al., 1992) and they believe these systems will revolutionized new future of nanoscience and technology and thus opening a very new and a vast filed of theoretical and experimental research. Studies and the publications on nanocones have been on since 1994 (Rubio et al., 1994) with employing various theoretical and experimental techniques to investigate valuable properties of nanocones (Rubio et al., 1994; Qu et al., 2008) but most of these studies have been performed experimentally (Bourgeois et al., 2000). The fascinating novel structures of boron nitride (BN) (Rubio et al., 1994)

*Corresponding author. E-mail: m_monajjemi@cm.utexas.edu.

have been intensively studied, since they have unique and interesting properties such as electronic (Song et al., 1994; Yakobson and Smalley, 1997) and mechanical (Depres et al., 1995; lijima et al., 1996) properties. Boron Nitride Nanocones (BNNCs) represent an important class of nanocnes; consist of B and N atoms. The number of electrons in combination of B and N atoms is the same as two carbon atoms, therefore they have similar properties and also in some cases, they are better candidates to predict properties compare to other composite materials. BNNCs have been investigated and synthesized (Rubio et al., 1994; Bourgeois et al., 2000; Terauchi et al., 2000) and shown they have very interesting properties in comparison with similar carbon nanostructure. We have proposed a B₁₀N₁₃ nanocone as a particular case to attach to Threonin, trough B terminated atoms to investigate thermodynamic properties. BNNCs are widely applicable in many fields such as cold electron source (Baylor et al., 2002; Monajjemi et al., 2010), and probes for electronic microscopy devices.

The purpose of this work is to understand stability, atomic structure and thermochemistry properties of one of the particular BNNCs as $B_{10}N_{11}H_7$ (Thr)_{2.}

The BN nanocones are the structures with polarity and high reactivity and flexibility to reagent medium

Figure 1. 3D view of $B_{10}N_{11}H_7$ (Thr)₂, where pink, blue, red, gray and light gray sphere indicate B, N, O, C and H atoms respectively.

surrounded, because the negative charge at N atom positions and also positive charge at B atom positions.

In present work based on DFT calculations, molecular dynamic simulation (MD) (Atkins and Friedman, 1997; Billing and Mikkelsen, 1997) and quantum Monte Carlo (QMC) (Monajjem et al., 2006; Monajjemi et al., 2006), we have simulated $B_{10}N_{11}H_7$ (Thr)₂ structure and investigated its properties. In this research, solvent effect has been performed, using onsager self-consistent model reaction field (SCRF) to analysis of thermodynamic parameters, and calculating Gibbs free energy, enthalpy and dipole moment. We have also computed the Mulliken charge and found active sites to obtain NMR parameters.

COMPUTATIONAL DETAILS

In present work, all calculations were performed using the *Gaussian98* program (Frisch et al., 1998) in the electronic ground state. We used this package to study many specific properties of $B_{10}N_{11}H_7$ (Thr)₂ such as molecular energies and structures, thermodynamic properties, Atomic charges, Multipole moment and NMR shielding in both gas phase and different solvent.

Density functional theory (DFT) (Parr and Yang, 1989) is a general computational method that is frequently used in computing properties of macromolecules as we applied this method to study on $B_{10}N_{11}H_7$ (Thr)₂. The atomic orbitals generally described by analytical basis set, and a basis set consisting of many atomic functions, gives better description of the electronic structure of the system. The Becke 3 Lee-Yang-Parr (B3LYP) functional (Becke, 1993; Parr and Yang, 1989) with 3-21G split-valance basis set was used in this work. Complete geometry optimizations for $B_{10}N_{11}H_7$ (Thr)₂ were carried out at B3LYP /3-21G level of theory. We have performed frequency test at the same theoretical level to clarify the optimized structure and wave function is ground state, without imaginary frequencies. MD and QMC simulations are two methods for determining physical properties of macroscopic, they were used to find additional minima in the present work. In both methods, the

standard program package was used and the temperature T is sequentially increased, step by step, from room temperature (RT, 300 K) to 310 K.

Solvent effect on $B_{10}N_{11}H_7$ (Thr)₂ was calculated in different solvents and five different temperatures of 298, 300, 305, 310 and 315 K by using the same method and basis sets. The average atomic charges have been derived from DFT calculations to obtain active sites in $B_{10}N_{11}H_7$ (Thr)₂.

It is well known that NMR spectroscopy is extremely sensitive to molecular structure and also environmental effects (Parr and Yang, 1989; Monajjemi et al., 2005; Kaupp et al., 2004; Otting and Liepinsh 1995; Monajjemi et al., 2007, 2008).

NMR investigation gives deeper physical insight into the influence of the solvent effect. In this work NMR parameters were calculated in two cases: (1) solute in the gas phase and (2) solute in the different solvent mediums. In all calculations the default gaugae-including atomic orbital (GIAO) (Donald and Martin, 2009), orbitals were used to obtain molecular magnetic susceptibilities, NMR shielding with Gaussian program.

RESULT AND DISCUSSION

 $B_{10}N_{13}$ nanocone as a particular case was considered to attach to Threonin (Thr), trough B terminated atoms. The resulting BNNCs were simulated by (BN) Thr containing 10 B atoms plus 13 N atoms, to investigate stability as well as thermodynamic properties. Except for some test cases we have used B3LYP/3-21G level of theory for geometry optimization of $B_{10}N_{11}H_7$ (Thr)₂. The results have given in four tables and six figures as follow. Full geometry optimization of $B_{10}N_{11}H_7$ (Thr)₂ has been carried out to find ground state structure shown in Figure 1. Figures 2 and 3 showed dependency of dipole moment to solvent dielectric constant and NMR parameters in five different solvents and gas phase respectively. A very good agreement can be observed between the calculated average Mulliken charges and medium in Figure 4. As it

Figure 2. calculated dipole moment μ (Debye) versus dielectric constant (ϵ) at bulk and five different solvents.

Figure 3. NMR parameters calculated (B3LYP/32-G) for $B_{10}N_{11}H_7$ (Thr)₂ in (a) gas phase, (b) benzene, (c)DMSO, (d) water (e) cyclohexane, (f) ethanol.

Figure 4. Average Mulliken charge values per atom for $B_{10}N_{11}H_7\,(Thr)_2$ in five different solvents and gas phase.

Figure 5. MD Calculations for $B_{10}N_{11}H_7(Thr)_2$: under four different temperatures and environmental setup with the interval of 0 < t < 0.1 ps.

shown in Figures 5 and 6, we have prepared our system for MD and QMC simulations for four different temperatures of 300, 305, 310 and 315 K. In each case

we followed standard default of MD and QMC simulations and performed a series of the calculations under a constant temperature and environmental setup with the

Figure 6. QMC Calculations for $B_{10}N_{11}H_7$ (Thr)₂: under four different temperatures and environmental setup with the interval of 0 < t < 100 ps.

interval of 0 < t < 100 ps and 0 < t < 0.1 ps for QMC and MD respectively. Using DFT method, the computed energetic data (enthalpy H, internal energy E and Gibbs free energy G) as well as dipole moment for various solvent are given in Table 1 and 2 respectively. To make our analysis clear and easier, $B_{10}N_{11}H_7$ (Thr)₂ is divided in three layers of atoms (or active sites) as shown in Table 3. These four layers constituted by: (1) six atoms, (2) three atoms, (3) five atoms, (4) seven atoms. We choose these particular layers due to the location of more negative (N atoms) and positive electronic charge (B atoms). The calculated Mulliken charge values per atom per layer are shown in Table 3. The NMR parameters were computed with concentration on active sites, and data summarized in Table 4.

CONCLUSIONS

In summary, an analysis of the MD, QMC and DFT calculations at the level of B3LYP/3-21G on $B_{10}N_{11}H_7$ (Thr)₂ nanocone have been performed. All calculations indicated that $B_{10}N_{11}H_7$ (Thr)₂ nancone structure possesses lower energy. The computed energy of the studied structure shown and proved the high stability of system without distortion and also more stable in different solvents. Further, to determine the location of active sites, Mulliken charge and NMR parameters were also analyzed and the Modeling provided chemical shift to study not only molecular structure, but also the specific solvent-solute interactions. The calculated results were strongly dependent on the adopted QMC and MD

	Temp	perature	298 K	300 K	305 K	310 K	315 K
	6	-G(Kcal/mol)	986338.5027	986338.87987442	986339.90773498	986340.9456356	986341.99483158
	E Ga	-H(Kcal/mol)	986277.7786	986277.54333083	986276.90201612	986276.2506612	986275.59114878
	•	-E(Kcal/mol)	986278.371015	986278.139464862	986277.5075627	986276.8668755	986276.21677575
	.39 .39	-G(Kcal/mol)	986337.6756	986338.046541808	986339.0574596	986340.0784175	986341.11004318
	Vat :78	-H(Kcal/mol)	986277.961252	986277.726563611	986277.0865039	986410.8207009	986275.77940163
	> "	-E(Kcal/mol)	986278.553621	986278.323325145	986277.6926780	986277.0532459	986276.40502860
	- 10	0///	000007 704 404	000000 000077544	000000 4000070	0000404040057	000044 45500007
	nno 1.55	-G(Kcal/mol)	986337.721491	986338.092977511	986339.1032678	986340.1242257	986341.15522387
	tha =24	-H(Kcal/mol)	9862/8.0164/3	9862//./81/8444/	9862//.141/24/	9862/6.4922524	9862/5.83399495
Ð	ш	-E(Kcal/mol)	986278.608841	9862/8.3//9184/2	986277.7478989	986277.1084667	9862/6.46024944
has	• •	G(Kool/mol)	096227 699961	096229 060247017	096220 0706272	096240 0015052	0962/1 10200099
₫	<u>18.6</u>		900337.000001	096077 745299906	096077 1047016	096076 4559569	900341.12322000 086275 70750040
		-F(Kcal/mol)	900277.979449	900277.74000090	900277.1047010	986277 0714436	900275.79759940
-			900270.372440	900270.341322921	900277.7100750	900277.0714430	900270.42322037
	ne t	-G(Kcal/mol)	986338.128745	986338.500231176	986339.5105214	986340.5321069	986341.56373255
	1ze 2.2	-H(Kcal/mol)	986278.406783	986278.172095356	986277.5320356	986276.8825633	986276.22367835
	۳. Ber	-E(Kcal/mol)	986278.999152	986278.768229381	986412.5214834	986277.4987776	986276.84993283
	_	. ,					
	ae	-G(Kcal/mol)	986338.160121	986338.532234161	986339.5431519	986340.5647374	986341.59699055
	02,	-H(Kcal/mol)	986278.428119	986278.193430679	986277.5533709	986276.9038986	986276.24501368
	Cyclol E=2.	-E(Kcal/mol)	986279.020488	986278.789564704	986278.1595451	986277.5194854	986276.87126816
	<u> </u>						

Table 1. Computed energetic data , enthalpy H (kcal/mol), internal energy E (kcal/mol) and Gibbs free energy G (kcal/mol) for B10N11H7 (Thr)2.

Table 2. Calculated dipole moment μ (Debye) versus dielectric constant for B10N11H7 (Thr)2 at B3LYP/3-21G in five different solvents and gas phase.

Medium	Dielectric constant (ε)	μ (Debye)
Gas	1	9.9948
Cyclohexane	2.023	12.7379
Benzene	2.247	12.9032
Ethanol	24.55	14.8415
DMSO	46.8	14.9741
Water	78.39	15.0369

Table 3. Average Mulliken charge values per atom per layer for $B_{10}N_{11}H_7$ (Thr)₂ in five different solvents and gas phase.

Layer	Atoms	Gas	Benzene	DMSO	Water	Cyclohexane	Ethanol
	B34	0.812292	-0.79635	-0.79603	-0.79602	-0.79637	-0.79605
	B26	0.848251	-0.79719	-0.7969	-0.7969	-0.79722	-0.79692
Lover 1	B35	0.786682	0.805621	0.802534	0.802444	0.80588	0.802721
Layer	N38	-0.81384	0.777324	0.773288	0.773171	0.777686	0.77353
	B41	0.921925	-0.81292	-0.81206	-0.81203	-0.81299	-0.81211
	B36	0.781718	0.778762	0.771011	0.770783	0.779404	0.771482

J. Med. Plant. Res.

	N44	-0.45205	0.916218	0.91368	0.913563	0.916393	0.913866
Layer 2	C48	0.435833	-0.42122	-0.41874	-0.41869	-0.42139	-0.41891
	O50	-0.42541	0.475104	0.484096	0.484346	0.474391	0.483509
	N25	-0.79749	-0.81381	-0.81365	-0.81365	-0.81383	-0.81366
	B27	0.784503	0.84278	0.837056	0.836888	0.843241	0.837419
Layer 3	N30	-0.82597	0.775183	0.763056	0.762695	0.776147	0.763836
	N32	-0.79656	-0.82514	-0.82449	-0.82446	-0.82519	-0.82453
	B26	0.848251	-0.79719	-0.7969	-0.7969	-0.79722	-0.79692
	B15	0.785292	0.778691	0.76991	0.769647	0.779379	0.770476
	N8	-0.54115	-0.5404	-0.53831	-0.53825	-0.54058	-0.53843
	N23	-0.81384	0.778691	0.76991	0.769647	0.779379	0.770476
Layer 4	B14	0.796561	0.791304	0.784353	0.784144	0.791846	0.784799
	N9	-0.54561	-0.54385	-0.54128	-0.54121	-0.54407	-0.54143
	B3	0.924982	0.923258	0.921182	0.921111	0.92341	0.921305
	N1	-0.44838	-0.44854	-0.44817	-0.44816	-0.44858	-0.44817

Table 3. Contd.

Table 4. Computed NMR parameters for $B_{10}N_{11}H_7$ (Thr)₂ in five different solvents and gas phase.

		Ga	is phase						Wa	ater		
Atoms	ь iso	<i>c</i> aniso	δ	Δ	б	η	ь iso	6aniso	δ	;	Δσ	η
N1	205.2212	51.3516	51.3516	51.3	3517	0.05375751	203.6597	49.6387	-36.2	201	49.6388	0.05929337
B3	99.8502	26.1219	17.4145	26.1	2185	0.01704297	99.7525	99.7525	17.4	631	26.1946	0.01758616
C6	16.5448	140.8158	93.8772	140.	8158	0.1019466	15.7857	138.3514	92.2	343	138.3515	0.1072762
N8	194.1503	60.0747	-46.3562	60.0)747	0.07417274	194.6425	59.9341	-46.1	259	59.93415	0.0788816
N9	185.8593	73.7298	-52.4482	73.7	7298	0.07851162	185.6629	72.8467	-51.9	632	72.8467	0.08350673
B14	98.1862	31.8245	21.2163	31.8	2445	0.0147917	97.9437	32.0367	21.3	577	32.03665	0.01471346
B15	97.3265	29.9279	-25.2423	29.9	2795	0.04300384	97.4274	30.2824	-25.1	524	30.2824	0.04542717
N23	145.4663	153.7932	102.5288	153.	7933	0.07923317	145.3826	151.9511	101.3	8008	151.9511	0.08521995
N25	138.6591	124.2298	-95.504	124.	2298	0.1523779	138.5064	123.4186	-95.3	406	123.4187	0.1635112
B26	95.4217	24.6611	16.4407	24.	661	0.01693832	95.3621	24.4943	16.3	295	24.4942	0.01873584
B27	91.1146	37.3643	24.9095	37.3	6425	0.03447538	91.2645	37.4448	24.9	632	37.4448	0.03735645
N30	160.874	159.0736	106.0491	159.	0736	0.02424199	161.6092	157.3774	104.9	9182	157.3774	0.02694217
N32	137.6093	125.4131	-95.12	125.	4132	0.1501851	137.0768	123.333	-95.0	922	123.333	0.1628479
B34	98.3457	31.2758	20.8505	31.2	2758	0.005891273	98.0419	31.8994	21.2	663	31.89945	0.01136999
B35	91.0759	37.2111	24.8074	37.2	1115	0.03401538	91.2616	37.0357	-24.8	027	37.03565	0.03758105
B36	97.1876	28.4725	-25.71	28.4	1724	0.04568793	97.1533	29.2091	-25.6	985	29.20905	0.04815386
N38	145.8798	154.8399	103.2266	154.	8399	0.08599162	145.4821	154.4838	102.9	9892	154.4839	0.09063939
B41	101.5787	25.6497	-17.3573	25.6	6497	0.0248096	101.0145	25.2621	16.8	414	25.2621	0.02273998
N44	209.343	51.8383	-38.3068	51.8	3383	0.05923216	208.2375	54.0932	36.0	622	54.09325	0.05140984
C48	8.8502	145.4784	96.9856	145.	4784	0.1075887	16.6962	144.5175	96.3 [,]	449	144.5174	0.1139841
O50	-345.4604	1064.9991	709.9994	1064	1.999	0.8030118	-303.3762	994.4468	662.9	9645	994.4467	0.7134163
DMSO						Benzene						
Atoms	o iso	<i>c</i> aniso	δ	Δ6	η	6 iso	<i>c</i> aniso	δ	Δ6	η		
N1	203.6917	49.6689	-36.2	49.7	0.0593	3 204.647	50.6902	-36.1047	50.7	0.05	584	
B3	99.7548	26.1935	17.4623	26.2	0.0176	6 99.8288	26.1582	17.4388	26.2	0.01	180	
C6	15.804	138.3981	92.2654	138	0.107	E 16.267	139.8945	93.263	140	0.10)9	
N8	194.6356	59.934	-46.1276	5.99	0.078	9 194.4222	59.8946	-46.2133	59.9	0.07	799	

N9	185.6707	72.8673	-51.9699	72.9	0.0835	185.9215	73.3429	-52.1997	73.3	0.0844
B14	97.9487	32.0328	21.3552	32	0.0147	98.1029	31.9067	21.2711	31.9	0.0153
B15	97.4257	30.2756	-25.1526	30.3	0.0455	97.3649	30.059	-25.1562	30.1	0.0461
N23	145.3869	151.975	101.3167	152	0.0852	145.5002	152.8788	101.9192	153	0.0858
N25	138.5109	123.4317	-95.3455	123	0.164	138.6748	123.8234	-95.4658	124	0.165
B26	95.364	24.4954	16.3303	24.5	0.0187	95.4224	24.5189	16.3459	24.5	0.0190
B27	91.2624	37.4428	24.9619	37.4	0.0374	91.1811	37.3938	24.9292	37.4	0.0377
N30	161.6014	157.3959	104.9306	157	0.0269	161.2901	158.0438	105.3625	158	0.0271
N32	137.0887	123.3496	-95.0968	123	0.163	137.5058	123.8768	-95.2689	124	0.164
B34	98.0435	31.8989	21.266	31.9	0.0113	98.1128	31.866	21.244	31.9	0.0107
B35	91.2601	37.0388	-24.804	37	0.0376	91.1939	37.1582	-24.8777	37.2	0.0380
B36	97.1565	29.208	-25.6932	29.2	0.0482	97.2667	29.1621	-25.5752	29.2	0.0482
N38	145.4925	154.5057	103.0037	155	0.0907	145.7542	155.2268	103.4845	155	0.0915
B41	101.0119	25.2607	16.8405	25.3	0.0227	100.9629	25.2337	16.8225	25.2	0.0224
N44	208.2634	54.1266	36.0844	54.1	0.0515	209.1167	55.186	36.7906	55.2	0.0531
C48	16.7457	144.4291	96.286	144	0.114	17.9135	142.1492	94.7661	142	0.119
O50	-303.1195	994.0766	662.7178	994	0.713	-297.1894	985.9879	657.3253	986	0.706
Cyclohe	exane					Ethanol				
Atoms	o iso	<i>c</i> aniso	δ	Δσ	η	o iso	<i>c</i> aniso	δ	Δσ	η
N1	204.7253	50.7732	-36.0936	50.8	0.05.84	203.7507	49.7335	-36.1952	49.7	0.0592
B3	99.834	26.1557	17.4372	26.2	0.0180	99.7596	26.1912	17.4607	26.2	0.0176
Ce		1 10 01 71	00 0 4 4 0	4.40			100 1050			
00	16.2999	140.0171	93.3448	140	0.110	15.8408	138.4956	92.3304	13.8	0.108
N8	16.2999 194.4069	140.0171 59.8922	93.3448 -46.22	140 59.9	0.110 0.0799	15.8408 194.6217	138.4956 59.9318	92.3304 -46.1335	13.8 59.9	0.108 0.0790
N8 N9	16.2999 194.4069 185.9374	140.0171 59.8922 73.3837	93.3448 -46.22 -52.2194	140 59.9 73.4	0.110 0.0799 0.0845	15.8408 194.6217 185.6847	138.4956 59.9318 72.8996	92.3304 -46.1335 -51.9845	13.8 59.9 72.9	0.108 0.0790 0.0836
N8 N9 B14	16.2999 194.4069 185.9374 98.1149	140.0171 59.8922 73.3837 31.8959	93.3448 -46.22 -52.2194 21.264	140 59.9 73.4 31.9	0.110 0.0799 0.0845 0.0153	15.8408 194.6217 185.6847 97.9587	138.4956 59.9318 72.8996 32.0247	92.3304 -46.1335 -51.9845 21.3498	13.8 59.9 72.9 32.0	0.108 0.0790 0.0836 0.0148
N8 N9 B14 B15	16.2999 194.4069 185.9374 98.1149 97.3596	140.0171 59.8922 73.3837 31.8959 30.042	93.3448 -46.22 -52.2194 21.264 -25.1559	140 59.9 73.4 31.9 30.0	0.110 0.0799 0.0845 0.0153 0.0461	15.8408 194.6217 185.6847 97.9587 97.4224	138.4956 59.9318 72.8996 32.0247 30.2609	92.3304 -46.1335 -51.9845 21.3498 -25.1532	13.8 59.9 72.9 32.0 30.3	0.108 0.0790 0.0836 0.0148 0.0455
N8 N9 B14 B15 N23	16.2999 194.4069 185.9374 98.1149 97.3596 145.5082	140.0171 59.8922 73.3837 31.8959 30.042 152.9537	93.3448 -46.22 -52.2194 21.264 -25.1559 101.9691	140 59.9 73.4 31.9 30.0 153	0.110 0.0799 0.0845 0.0153 0.0461 0.0858	15.8408 194.6217 185.6847 97.9587 97.4224 145.3956	138.4956 59.9318 72.8996 32.0247 30.2609 152.0338	92.3304 -46.1335 -51.9845 21.3498 -25.1532 101.3558	13.8 59.9 72.9 32.0 30.3 152	0.108 0.0790 0.0836 0.0148 0.0455 0.0853
N8 N9 B14 B15 N23 N25	16.2999 194.4069 185.9374 98.1149 97.3596 145.5082 138.6877	140.0171 59.8922 73.3837 31.8959 30.042 152.9537 123.8527	93.3448 -46.22 -52.2194 21.264 -25.1559 101.9691 -95.4743	140 59.9 73.4 31.9 30.0 153 124	0.110 0.0799 0.0845 0.0153 0.0461 0.0858 0.165	15.8408 194.6217 185.6847 97.9587 97.4224 145.3956 138.5219	138.4956 59.9318 72.8996 32.0247 30.2609 152.0338 123.4589	92.3304 -46.1335 -51.9845 21.3498 -25.1532 101.3558 -95.354	13.8 59.9 72.9 32.0 30.3 152 123	0.108 0.0790 0.0836 0.0148 0.0455 0.0853 0.164
N8 N9 B14 B15 N23 N25 B26	16.2999 194.4069 185.9374 98.1149 97.3596 145.5082 138.6877 95.4269	140.0171 59.8922 73.3837 31.8959 30.042 152.9537 123.8527 24.5202	93.3448 -46.22 -52.2194 21.264 -25.1559 101.9691 -95.4743 16.3468	140 59.9 73.4 31.9 30.0 153 124 24.5	0.110 0.0799 0.0845 0.0153 0.0461 0.0858 0.165 0.0190	15.8408 194.6217 185.6847 97.9587 97.4224 145.3956 138.5219 95.3681	138.4956 59.9318 72.8996 32.0247 30.2609 152.0338 123.4589 24.4967	92.3304 -46.1335 -51.9845 21.3498 -25.1532 101.3558 -95.354 16.3311	 13.8 59.9 72.9 32.0 30.3 152 123 24.5 	0.108 0.0790 0.0836 0.0148 0.0455 0.0853 0.164 0.0188
N8 N9 B14 B15 N23 N25 B26 B27	16.2999 194.4069 185.9374 98.1149 97.3596 145.5082 138.6877 95.4269 91.1742	140.0171 59.8922 73.3837 31.8959 30.042 152.9537 123.8527 24.5202 37.3905	93.3448 -46.22 -52.2194 21.264 -25.1559 101.9691 -95.4743 16.3468 24.9269	140 59.9 73.4 31.9 30.0 153 124 24.5 37.4	0.110 0.0799 0.0845 0.0153 0.0461 0.0858 0.165 0.0190 0.0378	15.8408 194.6217 185.6847 97.9587 97.4224 145.3956 138.5219 95.3681 91.2579	138.4956 59.9318 72.8996 32.0247 30.2609 152.0338 123.4589 24.4967 37.4396	92.3304 -46.1335 -51.9845 21.3498 -25.1532 101.3558 -95.354 16.3311 24.9597	13.8 59.9 72.9 32.0 30.3 152 123 24.5 37.4	0.108 0.0790 0.0836 0.0148 0.0455 0.0853 0.164 0.0188 0.0374
N8 N9 B14 B15 N23 N25 B26 B27 N30	16.2999 194.4069 185.9374 98.1149 97.3596 145.5082 138.6877 95.4269 91.1742 161.2632	140.0171 59.8922 73.3837 31.8959 30.042 152.9537 123.8527 24.5202 37.3905 158.0975	93.3448 -46.22 -52.2194 21.264 -25.1559 101.9691 -95.4743 16.3468 24.9269 105.3983	140 59.9 73.4 31.9 30.0 153 124 24.5 37.4 158	0.110 0.0799 0.0845 0.0153 0.0461 0.0858 0.165 0.0190 0.0378 0.0271	15.8408 194.6217 185.6847 97.9587 97.4224 145.3956 138.5219 95.3681 91.2579 161.5839	138.4956 59.9318 72.8996 32.0247 30.2609 152.0338 123.4589 24.4967 37.4396 157.4362	92.3304 -46.1335 -51.9845 21.3498 -25.1532 101.3558 -95.354 16.3311 24.9597 104.9575	 13.8 59.9 72.9 32.0 30.3 152 123 24.5 37.4 157 	0.108 0.0790 0.0836 0.0148 0.0455 0.0853 0.164 0.0188 0.0374 0.0270
N8 N9 B14 B15 N23 N25 B26 B27 N30 N32	16.2999 194.4069 185.9374 98.1149 97.3596 145.5082 138.6877 95.4269 91.1742 161.2632 137.5415	140.0171 59.8922 73.3837 31.8959 30.042 152.9537 123.8527 24.5202 37.3905 158.0975 123.9205	93.3448 -46.22 -52.2194 21.264 -25.1559 101.9691 -95.4743 16.3468 24.9269 105.3983 -95.2857	140 59.9 73.4 31.9 30.0 153 124 24.5 37.4 158 124	0.110 0.0799 0.0845 0.0153 0.0461 0.0858 0.165 0.0190 0.0378 0.0271 0.164	15.8408 194.6217 185.6847 97.9587 97.4224 145.3956 138.5219 95.3681 91.2579 161.5839 137.1152	138.4956 59.9318 72.8996 32.0247 30.2609 152.0338 123.4589 24.4967 37.4396 157.4362 123.3798	92.3304 -46.1335 -51.9845 21.3498 -25.1532 101.3558 -95.354 16.3311 24.9597 104.9575 -95.1051	13.8 59.9 72.9 32.0 30.3 152 123 24.5 37.4 157 123	0.108 0.0790 0.0836 0.0148 0.0455 0.0853 0.164 0.0188 0.0374 0.0270 0.163
N8 N9 B14 B15 N23 N25 B26 B27 N30 N32 B34	16.2999 194.4069 185.9374 98.1149 97.3596 145.5082 138.6877 95.4269 91.1742 161.2632 137.5415 98.1202	140.0171 59.8922 73.3837 31.8959 30.042 152.9537 123.8527 24.5202 37.3905 158.0975 123.9205 31.8613	93.3448 -46.22 -52.2194 21.264 -25.1559 101.9691 -95.4743 16.3468 24.9269 105.3983 -95.2857 21.2408	140 59.9 73.4 31.9 30.0 153 124 24.5 37.4 158 124 31.9	0.110 0.0799 0.0845 0.0153 0.0461 0.0858 0.165 0.0190 0.0378 0.0271 0.164 0.0106	15.8408 194.6217 185.6847 97.9587 97.4224 145.3956 138.5219 95.3681 91.2579 161.5839 137.1152 98.0472	138.4956 59.9318 72.8996 32.0247 30.2609 152.0338 123.4589 24.4967 37.4396 157.4362 123.3798 31.8984	92.3304 -46.1335 -51.9845 21.3498 -25.1532 101.3558 -95.354 16.3311 24.9597 104.9575 -95.1051 21.2656	13.8 59.9 72.9 32.0 30.3 152 123 24.5 37.4 157 123 31.9	0.108 0.0790 0.0836 0.0148 0.0455 0.0853 0.164 0.0188 0.0374 0.0270 0.163 0.0113
N8 N9 B14 B15 N23 N25 B26 B27 N30 N32 B34 B35	16.2999 194.4069 185.9374 98.1149 97.3596 145.5082 138.6877 95.4269 91.1742 161.2632 137.5415 98.1202 91.1867	140.0171 59.8922 73.3837 31.8959 30.042 152.9537 123.8527 24.5202 37.3905 158.0975 123.9205 31.8613 37.1667	93.3448 -46.22 -52.2194 21.264 -25.1559 101.9691 -95.4743 16.3468 24.9269 105.3983 -95.2857 21.2408 -24.8843	140 59.9 73.4 31.9 30.0 153 124 24.5 37.4 158 124 31.9 37.2	0.110 0.0799 0.0845 0.0153 0.0461 0.0858 0.165 0.0190 0.0378 0.0271 0.164 0.0106 0.0380	15.8408 194.6217 185.6847 97.9587 97.4224 145.3956 138.5219 95.3681 91.2579 161.5839 137.1152 98.0472 91.2571	138.4956 59.9318 72.8996 32.0247 30.2609 152.0338 123.4589 24.4967 37.4396 157.4362 123.3798 31.8984 37.0472	92.3304 -46.1335 -51.9845 21.3498 -25.1532 101.3558 -95.354 16.3311 24.9597 104.9575 -95.1051 21.2656 -24.8098	13.8 59.9 72.9 32.0 30.3 152 123 24.5 37.4 157 123 31.9 37.0	0.108 0.0790 0.0836 0.0148 0.0455 0.0853 0.164 0.0188 0.0374 0.0270 0.163 0.0113 0.0376
N8 N9 B14 B15 N23 N25 B26 B27 N30 N32 B34 B35 B36	16.2999 194.4069 185.9374 98.1149 97.3596 145.5082 138.6877 95.4269 91.1742 161.2632 137.5415 98.1202 91.1867 97.2743	140.0171 59.8922 73.3837 31.8959 30.042 152.9537 123.8527 24.5202 37.3905 158.0975 123.9205 31.8613 37.1667 29.1577	93.3448 -46.22 -52.2194 21.264 -25.1559 101.9691 -95.4743 16.3468 24.9269 105.3983 -95.2857 21.2408 -24.8843 -25.5657	140 59.9 73.4 31.9 30.0 153 124 24.5 37.4 158 124 31.9 37.2 29.2	0.110 0.0799 0.0845 0.0153 0.0461 0.0858 0.165 0.0190 0.0378 0.0271 0.164 0.0106 0.0380 0.0482	15.8408 194.6217 185.6847 97.9587 97.4224 145.3956 138.5219 95.3681 91.2579 161.5839 137.1152 98.0472 91.2571 97.1641	138.4956 59.9318 72.8996 32.0247 30.2609 152.0338 123.4589 24.4967 37.4396 157.4362 123.3798 31.8984 37.0472 29.2062	92.3304 -46.1335 -51.9845 21.3498 -25.1532 101.3558 -95.354 16.3311 24.9597 104.9575 -95.1051 21.2656 -24.8098 -25.6852	13.8 59.9 72.9 32.0 30.3 152 123 24.5 37.4 157 123 31.9 37.0 29.2	0.108 0.0790 0.0836 0.0148 0.0455 0.0853 0.164 0.0188 0.0374 0.0270 0.163 0.0113 0.0376 0.0482
N8 N9 B14 B15 N23 N25 B26 B27 N30 N32 B34 B35 B36 N38	16.2999 194.4069 185.9374 98.1149 97.3596 145.5082 138.6877 95.4269 91.1742 161.2632 137.5415 98.1202 91.1867 97.2743 145.7751	140.0171 59.8922 73.3837 31.8959 30.042 152.9537 123.8527 24.5202 37.3905 158.0975 123.9205 31.8613 37.1667 29.1577 155.2875	93.3448 -46.22 -52.2194 21.264 -25.1559 101.9691 -95.4743 16.3468 24.9269 105.3983 -95.2857 21.2408 -24.8843 -25.5657 103.5251	140 59.9 73.4 31.9 30.0 153 124 24.5 37.4 158 124 31.9 37.2 29.2 155	0.110 0.0799 0.0845 0.0153 0.0461 0.0858 0.165 0.0190 0.0378 0.0271 0.164 0.0106 0.0380 0.0482 0.0916	15.8408 194.6217 185.6847 97.9587 97.4224 145.3956 138.5219 95.3681 91.2579 161.5839 137.1152 98.0472 91.2571 97.1641 145.5096	138.4956 59.9318 72.8996 32.0247 30.2609 152.0338 123.4589 24.4967 37.4396 157.4362 123.3798 31.8984 37.0472 29.2062 154.5527	92.3304 -46.1335 -51.9845 21.3498 -25.1532 101.3558 -95.354 16.3311 24.9597 104.9575 -95.1051 21.2656 -24.8098 -25.6852 103.0351	13.8 59.9 72.9 32.0 30.3 152 123 24.5 37.4 157 123 31.9 37.0 29.2 155	0.108 0.0790 0.0836 0.0148 0.0455 0.0853 0.164 0.0188 0.0374 0.0270 0.163 0.0113 0.0376 0.0482 0.0907
N8 N9 B14 B15 N23 N25 B26 B27 N30 N32 B34 B35 B36 N38 B41	16.2999 194.4069 185.9374 98.1149 97.3596 145.5082 138.6877 95.4269 91.1742 161.2632 137.5415 98.1202 91.1867 97.2743 145.7751 100.957	140.0171 59.8922 73.3837 31.8959 30.042 152.9537 123.8527 24.5202 37.3905 158.0975 123.9205 31.8613 37.1667 29.1577 155.2875 25.2337	93.3448 -46.22 -52.2194 21.264 -25.1559 101.9691 -95.4743 16.3468 24.9269 105.3983 -95.2857 21.2408 -24.8843 -25.5657 103.5251 16.8225	140 59.9 73.4 31.9 30.0 153 124 24.5 37.4 158 124 31.9 37.2 29.2 155 25.2	0.110 0.0799 0.0845 0.0153 0.0461 0.0858 0.165 0.0190 0.0378 0.0271 0.164 0.0106 0.0380 0.0482 0.0916 0.0224	15.8408 194.6217 185.6847 97.9587 97.4224 145.3956 138.5219 95.3681 91.2579 161.5839 137.1152 98.0472 91.2571 97.1641 145.5096 101.0118	138.4956 59.9318 72.8996 32.0247 30.2609 152.0338 123.4589 24.4967 37.4396 157.4362 123.3798 31.8984 37.0472 29.2062 154.5527 25.255	92.3304 -46.1335 -51.9845 21.3498 -25.1532 101.3558 -95.354 16.3311 24.9597 104.9575 -95.1051 21.2656 -24.8098 -25.6852 103.0351 16.8362	13.8 59.9 72.9 32.0 30.3 152 123 24.5 37.4 157 123 31.9 37.0 29.2 155 25.3	0.108 0.0790 0.0836 0.0148 0.0455 0.0853 0.164 0.0188 0.0374 0.0270 0.163 0.0113 0.0376 0.0482 0.0907 0.0227
N8 N9 B14 B15 N23 N25 B26 B27 N30 N32 B34 B35 B36 N38 B41 N44	16.2999 194.4069 185.9374 98.1149 97.3596 145.5082 138.6877 95.4269 91.1742 161.2632 137.5415 98.1202 91.1867 97.2743 145.7751 100.957 209.1789	140.0171 59.8922 73.3837 31.8959 30.042 152.9537 123.8527 24.5202 37.3905 158.0975 123.9205 31.8613 37.1667 29.1577 155.2875 25.2337 55.2595	93.3448 -46.22 -52.2194 21.264 -25.1559 101.9691 -95.4743 16.3468 24.9269 105.3983 -95.2857 21.2408 -24.8843 -25.5657 103.5251 16.8225 36.8396	140 59.9 73.4 31.9 30.0 153 124 24.5 37.4 158 124 31.9 37.2 29.2 155 25.2 55.3	0.110 0.0799 0.0845 0.0153 0.0461 0.0858 0.165 0.0190 0.0378 0.0271 0.164 0.0106 0.0380 0.0482 0.0916 0.0224 0.0533	15.8408 194.6217 185.6847 97.9587 97.4224 145.3956 138.5219 95.3681 91.2579 161.5839 137.1152 98.0472 91.2571 97.1641 145.5096 101.0118 208.3245	138.4956 59.9318 72.8996 32.0247 30.2609 152.0338 123.4589 24.4967 37.4396 157.4362 123.3798 31.8984 37.0472 29.2062 154.5527 25.255 54.1931	92.3304 -46.1335 -51.9845 21.3498 -25.1532 101.3558 -95.354 16.3311 24.9597 104.9575 -95.1051 21.2656 -24.8098 -25.6852 103.0351 16.8362 36.1287	13.8 59.9 72.9 32.0 30.3 152 123 24.5 37.4 157 123 31.9 37.0 29.2 155 25.3 54.2	0.108 0.0790 0.0836 0.0148 0.0455 0.0853 0.164 0.0188 0.0374 0.0270 0.163 0.0113 0.0376 0.0482 0.0907 0.0227 0.0516
N8 N9 B14 B15 N23 N25 B26 B27 N30 N32 B34 B35 B36 N38 B41 N44 C48	16.2999 194.4069 185.9374 98.1149 97.3596 145.5082 138.6877 95.4269 91.1742 161.2632 137.5415 98.1202 91.1867 97.2743 145.7751 100.957 209.1789 17.9971	140.0171 59.8922 73.3837 31.8959 30.042 152.9537 123.8527 24.5202 37.3905 158.0975 123.9205 31.8613 37.1667 29.1577 155.2875 25.2337 55.2595 141.9686	93.3448 -46.22 -52.2194 21.264 -25.1559 101.9691 -95.4743 16.3468 24.9269 105.3983 -95.2857 21.2408 -24.8843 -25.5657 103.5251 16.8225 36.8396 94.6457	140 59.9 73.4 31.9 30.0 153 124 24.5 37.4 158 124 31.9 37.2 29.2 155 25.2 55.3 142	0.110 0.0799 0.0845 0.0153 0.0461 0.0858 0.165 0.0190 0.0378 0.0271 0.164 0.0106 0.0380 0.0482 0.0916 0.0224 0.0533 0.119	15.8408 194.6217 185.6847 97.9587 97.4224 145.3956 138.5219 95.3681 91.2579 161.5839 137.1152 98.0472 91.2571 97.1641 145.5096 101.0118 208.3245 16.8283	138.4956 59.9318 72.8996 32.0247 30.2609 152.0338 123.4589 24.4967 37.4396 157.4362 123.3798 31.8984 37.0472 29.2062 154.5527 25.255 54.1931 144.2606	92.3304 -46.1335 -51.9845 21.3498 -25.1532 101.3558 -95.354 16.3311 24.9597 104.9575 -95.1051 21.2656 -24.8098 -25.6852 103.0351 16.8362 36.1287 96.1737	13.859.972.932.030.315212324.537.415712331.937.029.215525.354.214.4	0.108 0.0790 0.0836 0.0148 0.0455 0.0853 0.164 0.0188 0.0374 0.0270 0.163 0.0113 0.0376 0.0482 0.0907 0.0227 0.0516 0.114

simulations. This is important to fully understand the geometrical specialty of B10N11H5 (Thr) 2 nanocone and the few other recently reported faceted nanocones, more favorable energetically and stability. With regard to biochemical phenomena, the results, illustrate a new picture of the BNNCs as a favorable candidate in biological system, pharmacology and drug delivery instead of the other nanocompounds.

REFERENCES

- lijima S (1991). Helical microtubules of graphitic carbon.Nature (London). 354: 56.
- lijima S Ichihashi T (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature (London). 363: 603.
- Bethune DS (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature (London). 363; 605.
- Kroto HW, Heath JR, OBrien SC, Curl RF, Smalley RE (1985). C₀:uckminsterfullerene.Nature (London). 318; 162.
- Sattler K (1995). Scanning tunneling microscopy of carbon nanotubes and nanocones. Carbon. 33: 915–920.
- Zhi C, Bando Y, Tang C, Golberg D (2005). Electronic structure of boron nitride cone-shaped nanostructures. Phys. Rev. B72: 245419
- lijima S, Ichihashi T, Ando Y (1992). Pentagons, heptagons and negative curvature in graphite microtubule growthNature (London). 356:776
- Rubio A, Corkill JL, Cohen ML(1994). Theory of graphitic boron–nitride nanotubes. Phys. Rev., B 49: 5081.
- Qu CQ, Qiao L, Wang C, Yu SS, Zheng WT, Fu YZ, Jiang Q (2008). First-principles density-functional calculations on the field emission properties of BN nanocones.Solid State Commun. 146: 399.
- Zhang HZ, Zhao Q, Yu J, Yu DP, Chen Y (2007). Field-emission characteristics of conical boron nitride nanorods .J. Phys. D. Appl. Phys., 40:144
- Bourgeois L, Bando Y, Han WQ, Sato T (2000). Structure of boron nitride nanoscale cones: Ordered stacking of 240 degrees and 300 degrees disclinations. Phys. Rev., B 61: 7686
- Rubio A, Corkill J L, Cohen ML (1994). Theory of graphitic boron nitride nanotubes. Phys. Rev., B 49:5081.
- Song SN, Wang XK, Chang RPH, Ketterson JB (1994). Electronic properties of graphite nanotubules from galvanomagnetic effectsPhys. Rev. Lett., 72: 679.
- Yakobson BI, Smalley RE (1997). Fullerene Nanotubes: C_{1,000,000} and Beyond. Am. Sci., 85: 324.
- Depres J, Daguerre E, Lafdi K (1995). Flexibility of graphene layers in carbon nanotubes .Carbon, 33: 87.
- lijima S, Brabec CJ, Maiti A, Bernholc J (1996). Structural flexibility of carbon nanotubesJ. Chem.Phys., 104: 2089.
- Rubio A, Corkill JL, Cohen ML (1994). Theory of graphitic boron nitride nanotubes. Phys. Rev., B 49:5081
- Bourgeois L, Bando Y, Han WQ, Sato T (2000). Structure of boron nitride nanoscale cones: Ordered stacking of 240° and 300° disclinations. Phys. Rev., B 61: 7686
- Terauchi M, Tanaka M, Suzuki K, Ogino A, Kimura K (2000). Production of zigzag-type BN nanotubes and BN cones by thermal annealing. Chem. Phys. Lett., 324:359.
- Baylor LR, Merkulov VI, Ellis ED, Guillorn MA, Lowndes DH, Melechko AV, Simpson ML, Whealton JH (2002). Field emission from isolated individual vertically aligned carbon NanoconesJ. Appl.Phys., 91: 4602.
- Monajjemi M, Lee VS, Khaleghian M, Honarparvar B, Mollaamin F (2010). Theoretical Description of Electromagnetic Nonbonded Interactions of Radical, Cationic, and Anionic NH2BHNBHNH2 Inside of the B18N18 Nanoring. J. Phys. Chem. C., 114: 15315–15330.
- Atkins PW, Friedman RS (1997). Molecular Quantum Mechanics. Oxford.
- Billing GD, Mikkelsen KV (1997). Advanced Molecular Dynamics and Chemical Kinetics. John Wiley & Sons, New York.

- Monajjem M, Ketabi S, Amiri A (2006).Monte Carlo Simulation Study of Melittin: Protein Folding and Temperature Dependence .Russian J. Phys. Chem., 1: 55-62.
- Monajjemi M, Ketabi S, Hashemian Zadeh M, Amiri A(2006).Simulation of DNA Bases in Water:Comparison of the Monte Carlo Algorithm with Molecular Mechanics Force Fields.Biochemistry (Moscow). 71: S1-S8 1998). GAUSSIAN 98, Revision A.7, Gaussian, Inc, Pittsburgh,PA.
- Parr RG, Yang W (1989). Density Functional Theory of Atoms and Molecules. Oxford, New York.
- Becke AD (1993). Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98: 5648-5652.
- Becke AD (1992). Density functional thermochemistry. I. The effect of the exchange only gradient correction. J. Chem. Phys., 96: 2155-2160.
- Becke AD (1992). Density functional thermochemistry. II. The effect of the Perdew–Wang generalized gradient correlation correction. J. Chem. Phys., 97: 9173-9177.
- Lee C, Yang W, Pleset MJ(1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev., B37:785.
- Parr RG, Yang W (1989). Density Functional Theory of Atoms and Molecules.Oxford, New york.
- Monajjemi M, Sayyadia R, Ghasemi G, Kalateh Kh, Nouria A, Naderi F (2005). Bond Energies and Phosphate-Coordination of Magnesium Hydrate to Pyrimidine Nucleotide 5'-Monophosphates (CMP, UMP, dTMP) and NMR Shielding Tensors. MAIN GROUP METAL CHEMISTRY.28: 247-263
- Kaupp M, Bu"hl M, Malkin VG (2004). Calculation of NMR And EPR Parameters: Theory and Applications. Wiley-VCH: Weinheim, Germany. Otting G, Liepinsh E (1995). Acc. Chem. Res., 28: 171-177.
- Monajjemi M, Heshmat M, Tahan A, Monajemi H, Mollaamin F (2007). Quantum mechanic study of basis set effect on NMR chemical shielding and Hydrogen bonding of some amino acids in gaseous phase and solvent. Egyption J. Biochem. Mole. Biol. BIANNUAL, 2:154-179.
- Monajjemi M, Rajaeian E, Mollaamin F, Naderi F, Saki S (2008). Investigation of NMR shielding tensors in 1,3 dipolar cycloadditions:solvents dielectric effect. Phys. Chem. Liquids., 46: 299 – 306.
- DonaldBR, Martin J (2009). Progress in Nuclear Magnetic Resonance Spectroscopy. 55: 101-127