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In this research we constructed multiple predictive ArcGIS Euclidean distance–based autoregressive 
infectious disease transmission oriented models for predicting geographic locations of endemic 
onchocerciasis (“river blindness”) transmission risk zones in Burkina Faso. We employed multiple 
spatiotemporal-sampled empirical ecological data sets of georeferenced covariates of riverine larval 
habitats of Similium damnosum s.l., a black fly vector of onchocerciasis and their surrounding villages 
with their retrospective tabulated prevalence rates. The estimators were regressed employing the 
modified sum of squares technique. The model also revealed that 5 to 10 km was mesoendemic, 10 to 
15 was hypoendemic and after 15 km there was no transmission. Semi-parametric spatial filtering 
matrices, orthogonal eigenvectors and interpolated endmember signatures can be used to render 
robust ARIMA risk model residual forecasts by reducing latent unobservable error coefficients in 
regressed spatiotemporal field-sampled immature S. damnosum s.l. density count data for optimizing 
risk mapping of seasonal onchocerciasis endemic transmission zones. 
 
Key words: Autoregressive integrated moving average (ARIMA), QuickBird, Similium damnosum s.l., 
onchocerciasis, Burkina Faso. 

 
 
INTRODUCTION 
 
In    predictive  autoregressive  vector    arthropod-related  

 
infectious   disease     transmission-oriented    risk-based 
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statistics, ordinary least squares (OLS) would be 
amethod for estimating unknown seasonal parameter 
error estimators in a linear regression-based model 
(Griffith, 2005). The OLS is a method for estimating the 
unknown parameters in a linearized regression model 
(Hosmer and Lemeshew, 2000). This method would 
minimize the sum of squared vertical distances between 
the observed responses in the sampled dataset and the 
responses predicted by the linear approximation. The 
resulting estimator can then be expressed by a simple 
formula, especially in the case of a single regressor in a 
seasonal, vector, arthropod-related, endemic, 
transmission-oriented, explanatory model. The OLS 
estimator is consistent when the regressors are 
exogenous and there is no perfect multicollinearity, and 
optimal in the class of linear unbiased estimators when 
the errors are homoscedastic and serially uncorrelated 
(Cressie, 1993). 

Optimally, thereafter, the class of linear, unbiased, 
seasonal, autoregressive, vector, arthropod-related, 
infectious disease, parameter estimators would be then 
homoscedastic and serially uncorrelated. A sequence or 
a vector of random variables is homoscedastic if all 
random variables in the sequence or vector have the 
same finite variance (Cressie, 1993). In a spatiotemporal, 
predictive, autoregressive, arthropod-related, risk-based, 
infectious disease distribution model, this would be 
known as homogeneity of variance (Mcdonald, 2008). 
Under these conditions, the method of OLS would 
provide minimum-variance, mean-unbiased, estimation 
when the endemic, transmission-oriented, regression-
based, risk-based distribution model residual error 
coefficients have finite variances. Unfortunately, when 
employing an autoregressive prediction model for 
quantitating georeferenced, predictive, seasonal, vector, 
arthropod-related, spatially, error-prone, explanatory, 
predictor variables from past time-series, dependent, 
covariate, coefficient, indicator values for the forecasting 
equation must be initialized in order to fit the explanatory, 
observational predictors, employing OLS estimates for 
ascertaining robust inferences. 

Fortunately, an eigenvector spatial filtering procedure 
can capture dependence based on the standard OLS 
estimator and is apart from the assumptions of 
independence and constant variance of the disturbances, 
a distribution freely owed to the Gauss Markov theorem. 
The Gauss Markov theorem states that in a linearized 
regression model in which the errors have expectation 
zero and are uncorrelated and have equal variances, the 
best linear, unbiased estimator of the sampled, covariate, 
coefficient indicator values would be provided by the OLS 
estimator (Aitken, 1935). This non-parametric spatial 
filtering   approach   can    employ  eigenvectors  that  are  
 

 
 
 
 
extracted from a transformed spatial link matrix for 
quantizing time-series, dependent, arthropod-related, 
autoregressive, infectious disease, transmission-oriented, 
risk-based, model residual autocorrelation error 
coefficients. The spatial, filtering estimator is fairly robust 
to endemic, transmission-oriented, model specification 
uncertainties compared with a spatial maximum likelihood 
estimator (McDonald, 2008). Commonly, assumptions of 
asymptotic properties of the maximum likelihood 
estimator and the quasi-maximum likelihood estimator 
have been employed for deducing parameter estimator 
significance in spatial autoregressive models (Cressie, 
1993). For example, asymptotic expansions in a 
spatiotemporal, arthropod-related infectious disease, 
transmission-oriented risk-based stochastic interpolator 
would be represented as an increasing-domain 
asymptotic as it would be based on increasingly dense 
observational predictors in a fixed and bounded region. 

In this research, we employed a space–time eigen 
decomposition spatial filter algorithm and multivariate 
autoregressive integrated moving average (ARIMA) for 
identifying onchocerciasis, endemic-oriented, 
transmission zones by quantitating a large, ecological, 
empirical dataset of georeferenced, riverine black fly 
larval habitat of Similium damnosum s.l. (that is, capture 
point) spatiotemporally-sampled in a study site in Burkina 
Faso. 

Simuliidae or black flies in the Simulium damnosum 
Theobald complex are the only insect vectors of human 
onchoceriasis in West African countries 
(www.who.gov).ARIMA models are, in theory, the most 
general class of models for forecasting a time-series 
which can be stationarized by transformations such as 
differencing and logging. In fact, the easiest way to think 
of ARIMA models is as fine-tuned versions of random-
walk and random-trend models: the fine-tuning consists 
of adding lags of the differenced series and/or lags of the 
forecast errors to the prediction equation, as needed to 
remove any last traces of autocorrelation from the 
forecast errors (Cressie 1993). In West Africa, members 
of Simulium damnosum complex are the only known 
vectors of human onchocerciasis (Crosskey 1960). 
Onchocerciasis a parasitic disease caused by infection by 
Onchocerca volvulus, a nematode (roundworm) which is 
the world's second-leading infectious cause of blindness. 
The parasite is transmitted to humans through the bite of 
a blackfly of the genus Simulium commonly found in fast 
flowing rural river ecosystems.  Similium larval stages are 
commonly found in running water where Precambrian 
rocks break the water surface and the turbulence of the 
water results in a higher level of oxygenation (Crosskey 
1960). 

Our assumption was that spatial dependence in  the  S. 
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damnosum s.l. riverine larval habitat in the data was from 
unobservable latent predictor variables that were 
correlated. Spatial dependence is the existence of 
statistical dependence in a collection of random variables 
or a collection time series of random variables, each of 
which is associated with a different geographical location 
(Goodchild, 1980). This dependence  is naturally formu-
lated within the framework of hierarchical, spatiotemporal,  
arthropod-related, infectious, disease, parameter 
estimator models and over the past decade, a variety of 
spatial models have been proposed for quantitating the  
latent level(s) of the hierarchy in these models. This is 
because dependence is of prime impor-tance in these 
applications where it is quite reasonable to postulate the 
existence of corresponding set of random variables at 
specific endemic transmission zones (for example, 
hyperendemic) that have not been included in a sample. 
Unfortunately, the specific issues posed by the 
sparseness of competent error estimators in predictive 
algorithms for arthropod-related infectious disease 
related data for quantitating local spatial dependence 
have not been thoroughly addressed in literature.   

As such, initially, in this research, a georeferenced 
immature S. damnosum s.l. riverine habitat capture point 
was overlaid onto QuickBird visible and near-infra-red 
(NIR) (www.digitalglobe.com) data based on stratified 
geographical locations at 5, 10 and 15 km Euclidean-
based distances from a capture point. Numerous studies 
have been undertaken using satellite-derived environ-
mental data to predict the distribution, abundance and 
prevalence of diseases and their vectors, including 
malaria (Hay et al., 2000; Rogers et al., 2002), 
leishmaniasis (Elnaiem et al., 2003), filariasis (Lindsay 
and  Thomas, 2000), trypanosomiasis (Rogers, 2000) 
and schistosomiasis (Brooker et al., 2001; Malone et al., 
2001; Brooker et al., 2002a, 2002b; Moodley et al., 2003; 
Kabatereine et al., 2004). Univariate and Poisson 
regression models were then constructed for each deli-
neated transmission zone. Thereafter, an autoregressive 
approach was employed to spatially extrapolate the 
existence of any residualized stochastic processes in the 
mean of the regression models. 

Euclidean, distant-based, explanatory measurements 
were generated in ArcGIS spatial analyst from the 
georeferenced S. damnosum s.l., riverine, larval habitat 
capture point which was then employed to delineate the 
endemic, transmission-oriented zones thresholds at the 
study site, employing stratified prevalence rates as 
independent variables in the regression-based estimation 
matrices. The asymptotic distribution of an empirical 
dataset of georeferenced, standardized, linear model 
parameter estimators were then derived to detect if the 
serially correlated latent processes were present in the 
ArcGIS Euclidean distant-based measurements. This 
technique qualitatively assessed the time series 
dependence   in  the  spatiotemporal-sampled  dataset  of 
explanatory,   predictor,   covariate,  coefficient  estimates  
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which were then log-transformed into Gaussian inde-
pendent variables. These covariate coefficients were then 
exported into an autoregressive, uncertainty, probabilistic 
estimation model framework in SAS/GIS. Currently, 
within SAS/GIS the ARIMA procedure provides 
parameter estimation for constructing autoregressive 
integrated moving average (that is, Box-Jenkins) models, 
seasonal ARIMA models, transfer function models and 
intervention models (www.sas.edu). 

Prior to mapping the onchocerciasis-related variables, 
exploratory spatial data analysis (ESDA) tools in ArcGIS 
were used to assess the statistical properties of the field-
sampled data. Having explored the data, we created a 
variety of output map types (that is, prediction, error of 
prediction, probability and quantile) using a variant of a 
stochastically-based, kriged-based, explanatory algorithm 
(that is an, ordinary interpolator) and associated tools (for 
example, data transformation, declustering and detren-
ding). Our research also considered the construction of 
specific parameter estimators of regression coefficients in 
a linear regression model, employing stochastically 
oriented a priori information. A priori information can be 
framed as stochastic restrictions (Cressie, 1993). In this 
research, the dominance conditions of the estimators 
were derived under the criterion of mean squared error 
matrix. Simple probabilistic and disjunctive formulas for 
quantitating the effect of the estimated predictive, 
residual, standard, autocovariance error variables were 
then generated. Thereafter, we adjusted the bias in 
eigenspace using spatiotemporal-sampled Euclidean, 
distance-based parameter estimators for deriving precise 
endemic transmission zones (that is, 5, 10 and 15 km) as 
depicited by the ArcGIS delineated maps created from 
the georeferenced, riverine S. damnosum s.l. riverine 
larval habitat capture point. We employed 
spatiotemporal-sampled data obtained from the African 
Programme for Onchocerciasis Control (APOC, 1974–
2002) for remotely constructing our robust, endemic,S. 
damnsoum s.l,. riverine topographic, riverine –based 
landscape forecasting risk models. Large scale control of 
onchocerciasis commenced over three decades ago, 
initially through the Onchocerciasis Control Programme in 
West Africa (OCP, 1974–2002), and more recently by the 
African Programme for Onchocerciasis Control (APOC, 
1995–2010). The goals of OCP were to eliminate 
onchocerciasis as a public health problem and to mitigate 
its negative impact on the social and economic 
development of affected regions (Toe, 1993). The 
strategic objective of APOC is to permanently protect the 
remaining 120 million people at risk of this debilitating 
and disfiguring disease in 19 countries in Africa through 
the establishment of community-directed treatment with 
ivermectin (CDTI) that is capable of being sustained by 
the communities after APOC financing has ended.  

Additionally, in this research, robust, predictive 
endmember signatures were generated from a spectrally 
decomposed   georeferenced, S. damnosum s.l.,  riverine 
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Figure 1. Map of Burkina Faso. 

 
 
 
larval habitat capture point using QuickBird mixel data, 
employing multiple un-mixing models and object-based 
classifiers (for example,  Li –Strahler geometric –optical 
model, ENVI’s Spectral Angular Mapper). Because of the 
design specifications of sensors, rarely, if ever does the 
spatial resolution match the size of an item on the 
ground; when one pixel includes the signatures of two or 
more endmembers, it is considered a mixed pixel or a 
‘mixel’ (Jensen, 2005). In this research, the endmembers 
derived were stochastically interpolated for identifying 
unknown, unsampled riverine, larval habitats along the 
study site corridor.  The analyses also included the 
spatial-spectral, endmember extraction algorithm (SSEE), 
which was employed using the SPA. Our assumption was 
that  by interpolating unmixed, sub-meter, resolution, sub-
mixel, image, riverine, larval, habitat, capture point  
endmember, emissivity spectra  extracted   from various 
unmixing algorithms in a least squares estimation 
algorithm, the residual would reveal unsampled S 
damnosum s.l.,riverine larval habitats and their within 
canopied  features (for example, Precambrian rock  and 
ripple water). Spectral unmixing algorithms have 
proliferated in a variety of ecological disciplines by 
exploiting remotely sensed data (Jensen, 2005).  

Therefore, this research objectives were to: (1) Remo-
tely display all spatiotemporal, seasonal-sampled, empirical 

empirical, ecological-based, S. damnosum s.l.- related 
spatial feature attributes with their surrounding riverine–
based communities using QuickBird visible and near 
infra-red (NIR) data; (2) construct multiple predictive, 
autoregressive models employing time series-dependent, 
explanatory, covariate coefficients; (3) spectrally extract 
and decompose a QuickBird mixel to derive and classify  
endmember emissivity spectra for interpolating a target 
signature; (4) construct residual uncertainty covariance 
matrices based on regression-derived observational 
predictors and; (4) adjust any bias in the Euclidean 
distance–based parameter estimators at distances of 5, 
10 and 15 km from  a capture point  to  generate a 
robust, autoregressive, endemic, transmission-oriented, 
predictive risk map, delineating  onchocerciasis-related 
endemic  transmission zones at a georeferenced, 
epidemiological riverine study site in Burkina Faso. 
 
 
METHODOLOGY 
 
Study site 
 
Burkina Faso is a landlocked country in West Africa. It is sur-
rounded by six countries: Mali to the north, Niger to the east, Benin 
to the southeast, Togo and Ghana to the south, and Côte d'Ivoire to 
the  southwest  (Figure 1) .  Its  size is 274,200 km2 (105,900 sq. m)  
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Figure 2. QuickBird visible and near infra-red data for the Chutes-Dienkoa study site. 

 
 
 
with an estimated population of more than 15,757,000. Total land 
area is 274,200 km² of which water covers approximately 400 km². 
Burkina Faso has three distinct seasons: warm and dry (November 
to March), hot and dry (March to May), and hot and wet (June to 
October). Annual rainfall varies from about 250 mm to 1,000 mm in 
the riverine study site region. The terrain is mostly flat, with 
undulating plains and hills. Most of the study site region lies on a 
savanna plateau, with fields, brush and scattered tree. Burkina 
Faso lies mostly between latitudes 9° and 15°N (a small area is 
north of 15°), and longitudes 6° W and 3° E. It is made up of two 
major types of countryside. The larger part of the country is covered 
by a peneplain, which forms a gently undulating landscape with, in 
some areas, a few isolated hills, the last vestiges of a Precambrian 
Massif. The Southwest of the country, on the other hand, forms a 
sandstone massif, where the highest peak, Ténakourou, is found at 
an elevation of 749 m (2,457 ft). The massif is bordered by sheer 
cliffs up to 150 m (492 ft) high. The average altitude of Burkina 
Faso is 400 m (1,312 ft) and the difference between the highest and 
lowest terrain is no greater than 600 m (1,969 ft). Burkina Faso is 
therefore a relatively flat country. The country owes its former name 
of Upper Volta to three rivers which crosses it: the Black Volta the 
White Volta and the Red Volta. The Black Volta is one of the 
country's only two rivers which flow year-round, the other being the 
Komoé, which flows to the southwest. The basin of the Niger River 
also drains 27% of the country's surface. The Niger's tributaries – 
the Béli, the Gorouol, the Goudébo and the Dargol are seasonal 
streams and flow for only four to six months a year. 
 
 
Remote sensing data 
 
Raster image data from the DigitalGlobe QuickBird satellite service 
were acquired for the study site for the periods of 15th July, 2010, 
within the riverine study site  area  (Figure 2).  In  this  research  the  

QuickBird image data were delivered as pan-sharpened composite 
products in infra-red (IR) colors. QuickBird multispectral products 
provided four discrete non-overlapping spectral bands in the 0.45 to 
0.72 µm range. The QuickBird sensors were able to identify dug 
wells that were 1 to 2 cm in depth. Results revealed that well-
digging was practiced on 387 (1.4%) rainfed land cover classified 
areas, 15,638 (54.7%) with the majority located in dryer arid 
regions. The field-plot revealed an accuracy of 92% with an error of 
omission and commission of less than 10%. Only the clearest, 
cloud-free imagery was available of the contiguous sub-areas of the 
study site. The Order Polygon contained 5 vertices consisting of 
longitude/latitude (decimal degrees) geographic coordinates using a 
WGS-84 ellipsoid. The satellite data contained 64 km2 of the land 
cover in the riverine epidemiological study site. The QuickBird 
imagery was classified using the Iterative Self-Organizing Data 
Analysis Technique (ISODATA) unsupervised routine in ERDAS 
Imagine v.8.7™ (ERDAS, Inc., Atlanta, Georgia). A base map of the 
riverine study site was then generated in ArcGIS using the 
QuickBird data and differentially corrected global positioning 
systems (DGPS) ground coordinates of the spatiotemporal-sampled 
S. damnsoum s.l. habitat epidemiological capture point and the 
surrounding georeferenced villages (Figure 3). 

The DGPS were acquired from a CSI max receiver which has a 
positional accuracy of +/- 0.178. (http://www.omnistar.com/). Using 
a local DGPS broadcaster can compensate for ionospheric and 
ephemeris effects which can improve horizontal accuracy 
significantly and can bring altitude error down in a predictive vector 
insect habitat model (Jensen, 2005). Each georeferenced 
S.damnosum s.l. habitat was entered into the VCMS™ relational 
database software product (Clarke Mosquito Control Products, 
Roselle, IL). The VCMS™ database supports a mobile field data 
acquisition component module called Mobile VCMS™ that 
synchronizes field-sampled arthropod-related data from industry 
standard Microsoft  Windows  Mobile™  devices  and  can  support 
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Figure 3. Base map of the sampled study site capture point and surrounding epidemiological sampled riverine 
villages. 

 
 
 
add-on DGPS data collection (Jacob et al., 2008b, c). A digitized 
grid-based algorithm was then constructed in ArcGIS by applying a 
mathematical algorithm in order to fit the continuous and bounded 
sampled larval habitat surfaces from a field-sampled attribute. A grid 
is a raster data storage format native to ESRI (www.esri.com) 
(Figure 3). 
 
 
Environmental parameters 
 
Multiple observational georeferenced explanatory observational 
predictors were then examined extensively using longitude, latitude, 
and altitude data (Table 1). The criteria involved the centrographic 
measures    of   spatial   mean    and      distance     between       the 

epidemiological prevalence stratified villages and the 
georeferenced capture point. The data was also comprised of 
individual spatiotemporal-sampled observations of S. damnosums.l. 
habitat capture point together with a battery of categorical attribute 
measures which were expanded to include multiple, endemic, 
transmission-oriented, risk-based, explanatory, predictor, covariate, 
coefficient estimates. 

The habitat distances were then measured as Euclidean 
distances in the ArcGIS projection units of the raster which com-
puted the digitized grid cell matrix. The Euclidean distance output 
raster contained the measured distances. The Euclidean distance 
functions provided information according to Euclidean or straight-
line distance between georeferenced epidemiological villages and 
from the riverine  capture  point  to  the  villages  (that  is, geometric 
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Table 1. Environmental predictor variables sampled at the epidemiological capture point. 
  

Variable Description  Units 

GCP Ground control points Decimal-degrees 
FlOW flowing water Presence or absence 
HGHT Height of water - 
TURB Turbidity of water Formazin Turbidity Unit  
AQVEG Aquatic vegetation Percentage 
HGVEG Hanging vegetation Percentage 
DDVEG Dead vegetation Percentage 
RCKS Rocks Percentage 
MMB Man-made barriers Type (damns, bridges) 
DISHAB Distance  between habitats Meters 

 
 

 
 
Figure 4. An ArcGIS digitized grid matrix overlaid onto the georeferenced S. damnosum s.l. riverine habitat capture point.  

 
 
distances in the multidimensional space). In this research, the 
Euclidean distances were computed as: distance (x,y) = { i (xi - 
yi)

2 }½. Every cell in the Euclidean allocation output raster was the 
then assigned the value of the source to which it was closest. The 
nearest source was then determined by the Euclidean distance 
function in ArcGIS®. This function assigned space between the 
georeferenced S. damnosums.l. riverine habitat capture  point   and 

the villages with their stratified prevalence rates. The Euclidean 
direction output raster contained the Azimuth direction from each 
grid cell centroid to the nearest source. Then the Euclidean 
allocation function identified the nearest human habitation center 
closest to each grid cell. The distance between sampled and human 
habitation areas were then categorized into numerous classes (for 
example, 1: 0 to 5 km, 2: 5 to 10 km and 10 to 15 km) Figure 4. 
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Regression model 
 
Poisson models were constructed for determining significance levels of the Euclidean distance-based explanatory covariates and the other 
endemic transmission-oriented LULC attributes in SAS GEN MOD. The Poisson process  was provided by the limit of a binomial distribution 
of the spatiotemporal-sampled, covariate, coefficient estimates within each distance boundary set at 5 km intervals from the capture point up 
to a maximum distance of 15 km employing: 
 

  (1).  
 
Prevalence rates were used as the response variable in the models. We viewed the distribution as a function of the expected number of e  
predictor variables  sampled employing the sample sizeN for quantifying the fixed p  in equation (1), which then was transformed into  the 
linear equation: 
 

  
 

Based on the sample size N, the distribution approached   in this research was expressed as: 
 

= =     

= =  
 
The GENMOD procedure then was used to fit multiple generalized linear models (GLMs) equations to the sampled riverine epidemiological 
data by maximum likelihood estimation of the parameter vector β. In this research the GENMOD procedure estimated the explanatory 
covariate coefficients of each Euclidean distance-based model at 5, 10 and 15 km numerically through an iterative fitting process. The 
dispersion parameter was then estimated by the residual deviance and by employing the product of Pearson’s chi-square divided by the 
degree of freedom (d.f.) in the model. Covariances, standard errors, and p-values were then computed for the estimated explanatory, 
observational, predictor at each distant-dependent, geographical location based on the asymptotic normality derived from the maximum 
likelihood estimation. Note that the sample size N completely dropped out of the probability function, which in this research had the same 

functional form for all the spatiotemporal-sampled, distant-dependent parameter estimator values (that is, ). As expected, the Poisson 
distribution was normalized so that the sum of probabilities equaled 1 (Haight, 1967). The ratio of probabilities was then: 
 

 provided by: . 
 

The Poisson distribution revealed that the covariate coefficients reached a maximum when:   
 
where  was the Euler-Mascheroni constant and  was a harmonic number, leading to the transcendental equation: .  
 
The model revealed that the Euler-Mascheroni constant arose in the integrals as: 
 

 =  = = =   (2).  
 

Commonly, integrals that render  in combination with temporal constants include: 
 

=  and = (Haight 1967).  
 
Thereafter, the double integrals in the distant-based regression models included: 
 

 
 
An interesting analog of equation (2) in the models was then provided by: 
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 = = = .  
 
 
This solution was also provided by incorporating Mertens theorem: 
 

[i.e., ]  
 
where the product was aggregated over the sampled explanatory, predictor,covariate, coefficient values found in the ecological datasets. 
Mertens' 3rd theorem: 
 

    
 
is related to the density of prime numbers, where γ is the Euler–Mascheroni constant. By taking the logarithm of both sides in the regression 

models, an explicit formula for I was then dervived using: 
 

   
 
This product was also given by series due to Euler, which followed from equation (2) by first replacing: 
 

b ,  in the equation  and then generating  . 
 

We then substituted the telescoping sum:  for  which rendered . 
 

Thereafter, we obtained:     =  
 

Additionally, other series in the distant-based regression models included the equation () where: 
 

 =  
 

and where  was and the Riemann zeta function. The Riemann zeta functionζ(s), is a function of a complex, 

explanatory,  predictor   variables that analytically continues the sum of the infinite series:   
 

which converges when the real part of s is greater than 1 where lg is the logarithm to base 2 and  is the floor function (see Haight 1967).  
 

 In this research  was employed as a binomial coefficient, and then it was rearranged to achieve the conditionally convergent series in 
our Euclidean, distant-based, endemic, transmission-oriented, regression-based, epidemiological, predictive, risk  model as the plus and 
minus terms were first grouped in pairs of the sampled  covariate coefficients using the resulting series of the actual seasonal-sampled 
values. The double series was thereby equivalent to Catalan's integral: 
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[i.e., ]  
 
Catalan's integrals are a special case of general formulas due to: 
 

  
 

where is a Bessel function of the first kind. The Bessel function is a function  defined in a robust regression model by employing 
the recurrence relations: 
 

and (Haight 1967), which more recently has been employed to  define  
solutions  and quantify heteroskedastic parameters in a  spatiotemporal regression models using the differential equation: 

(Ross, 2007). 

In this research the Bessel function  was defined by the contour integral:  
 
where the contour enclosed the origin and was traversed in a counterclockwise direction. This function generated: 
 

 
 

where and . Thereafter, to quantify the equivalence in the sampled empirical dataset of the regression-based parameter 

estimators, we expanded  in a geometric series and multiplied the district-level sampled data by , and integrated the term 

wise as in Sondow and Zudilin (2006). Other series for  then included: 
 

  and   
 

A rapidly converging limit for  was then provided by:  = = 

 where  was a Bernoulli number.  
 

Another limit formula was then provided by the equation:  
 

Limits to the model was then rendered by:    
 

where  was the Riemann zeta function. Another model output was rendered from the endemic transmission-oriented regression-based 

equation which was generated by  for the linearly, quantitated, explanatory, covariate coefficient numerical values in the 

empirical dataset 1 to I in the sampled dataset which in this research was found to be asymptotic to: 
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An elegant identity for  in our regression models was then provided by: 
 

    
 

Where  was a modified Bessel function of the first kind,  was a modified Bessel function of the second kind, and: 
 

   
 

where  was a harmonic number. This provided an efficient iterative algorithm for  by computing: 
 

 = , = , =  and = with  and .  
 
Reformulating this identity rendered the limit in our endemic, transmission-oriented, regression-based,risk model as: 
 

 . 
 

In this research, infinite products involving  also arose from the Barnes G-function using the sampled, explanatory, covariate coefficients. In 
mathematics, the Barnes G-function G(z) is a function that is an extension of super factorials to the complex numbers which is related to the 
Gamma function. In this research, this function provided: 
 

 = and =  
 
The Barnes G-function was thereafter linearly defined in our time-series, dependent,endemic, transmission-oriented distribution, risk model 
which was then defined by using the product of: 
 

  
 
Where γ was the Euler–Mascheroni constant, exp(x) = ex, and ∏ was the capital pi notation. The Euler-Mascheroni constant was thereafter 

rendered by the expressions =  =  where  was the digamma function: 
 

  and the symmetric limit form of:  and   
 

The digamma function was then defined as the logarithmic derivative of the gamma function:    
 
where it was the first of the polygamma functions in the endemic, transmission-oriented, regression-based, risk-related model. The digamma 
function, often denoted as ψ0(x), ψ0(x)  is related to the harmonic numbers in a seasonal, infectious disease, arthropod-related, risk model in 

that where Hn is the nth harmonic number, and γ is the Euler-Mascheroni constant (Jacob et al., 2012a). For half-

integer values, the digamma function may be expressed as:  (Hosmer and Lemeshew, 2000). 
 

The digamma function in our model was denoted as ψ0(x) which was related to the harmonic numbers in  
when Hn was the nth harmonic number, and γ was the Euler-Mascheroni constant. It had the integral representation: 
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In this research this expression was written as:  which followed from Euler's integral formula for 
the harmonic numbers derived from the linear endemic transmission regression-based risk-related model. In this research the Digamma of 
the linearized S. damnosum s.l. endemic-transmission-oriented risk-related model was computed in the complex plane, using: 
 

 
 
and  
 

 
 
 
These equations were  utilized to evaluate infinite sums of rational functions, where p(n) and q(n) were polynomials of n. Performing partial 
fraction on un in the complex field, in the spatiotemporal, predictive, autoregressive, vector, arthropod-related, endemic, transmission-
oriented, landscape, risk-based, distribution models employing all roots of q(n) as simple roots then  rendered: 
 

 .  
 

We had to use  for the series to converge. Hence, the expression: 
 
 
 

and  
 
was rendered  using the series expansion of higher rank polygamma function and a generalized formula: 
 

[i.e., ]. 
 

We noticed that in our endemic transmission-oriented model  was the only solution of the functional equation: 

 ,that is monotone on satisfied . The digamma then had a Gaussian sum of the form: 
 

. 
 
Thereafter, the endemic, transmission-oriented, risk-based, distribution, model residuals revealed that ζ(s,q) was the Hurwitz 

 zeta function and  which was a Bernoulli polynomial. The Bernoulli polynomials are an Appell sequence with  

(Roman 1984), giving the generating  function  (Abramowitz and Stegun 1972), first obtained by Euler (1738). The 
first few Bernoulli polynomials in this research were: 
 

=1, = , = , = , = , = ,

=  

 
We also defined an older type of "Bernoulli polynomial" by writing: 
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This would then render the polynomials  where  was a Bernoulli number, the first few of which are:  
 

=x, = , = , = , =   
 

The Bernoulli polynomials also satisfied  and  for , so  

for odd . The S. damnosum s.l. polynmoials also satisfied the relation In this research, for deriving robust  

estimation values of , was  expressed for the explanatory, predictor, covariate coefficients in the empirical dataset integers nin terms 
of Bernoulli and Euler numbers which led to: 

 = , = , = , =  
 

, =  
 
Bernoulli (1713) defined the polynomials in terms of sums of the powers of consecutive integers: 
 

  
 
Fortunately, our Bernoulli polynomials satisfied the recurrence relation: 
 

  
 

in theS. damnosum s.l.model which obeyed  the identity  where  was  interpreted as the Bernoulli number 

[i.e., ] (Jacob et al., 2005b).When formulated as an equation to be solved, recurrence relations are known as recurrence 

equations, or sometimes difference equations (Everitt 2002). The difference between the nth convergent and  in the onchocericais, endemic, 
transmission-oriented, linearized,regression-based, risk model was then provided by: 
 

   

where  was the floor function which satisfied the inequality expression:  . 
 

The symbol  was then . This led to the radical representation of the seasonal-sampled, explanatory, predictor, 
covariate coefficients as: 
 

which was then related to the double series: 
 

and , a binomial coefficient.  
 
Another proof of product in the regression models was then provided by the equation: 
 

 …. 

The solution was then made clearer by changing . In this research both these regression-based formulas were also analogous to 

the product for which was then  rendered by the computation: 
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… 
 
Unfortunately, extra-Poisson variation was detected in the estimated predictive, residual variance estimates in our model. As such, we 
constructed a robust negative binomial regression model in SAS with non-homogenous gamma distributed n means by incorporating 

( ) in equation (2.1) .The distribution in the linear regression was then rewritten: 
 

 
 
The negative binomial distribution was thus derived as a gamma mixture of the Poissonian randomized variables. The conditional mean in the 

model was then and the variance was: 
 

. 
 
To further estimate the district-level models, we specified DIST=NEGBIN (p=1) in the MODEL statement in PROC REG. The negative 

binomial model NEGBIN1 was set , which revealed the variance function [i.e., ] was linear in the mean of the 
models. The log-likelihood function for each NEGBIN1 regression model was then provided by the following equation: 
 

 =   
 

where . 
The gradient for the risk model was then: 

  and  
 
 

. 
 
 
 

In this research, the negative binomial regression district-level model with variance function , was referred to as the 
NEGBIN2 model. To estimate this model, we specified DIST=NEGBIN (p=2) in the MODEL statements. A test of the Poisson distribution was 

then performed by examining the hypothesis that . A Wald test of this hypothesis was also provided which were the reported t 
statistics for the estimates in the negative binomial regression model. The log-likelihood function of the model (that is, NEGBIN2) was then 
generated by 
 

 n = =  where   was an integer when the  
 
gradient was: 
 

.  
 

The variance in the model was then assessed by: . 



 
 
 
 
Object-oriented classification 
 

Once an ecological dataset of the remotely-dependent, 
explanatory, predictor, covariate coefficients was constructed in 
ArcGIS, the data was exported to ENVI® which used various 
spectral–based algorithms to analyze the QuickBird visible and NIR 
data of the georeferenced S. damnosums.l.riverine larval habitat 
capture point.  

The two main algorithms employed in our endmember 
decomposition was the spectral angle mapper (SAM) and spectral 
information divergence (SID) classification. SAM is a deterministic 
method that looks for an exact pixelmatch and weights the 
differences as same while SID is a probabilistic method that allows 
for variations in pixel measurements, where probability is measured 
from zero to a user-defined threshold.  

In our research the basic workflow involved importing the data 
collected in the field from the riverine study site into a spectral 
library (http://www.exelisvis.com). Thereafter, SAM employed an n-
dimensional angle to match the QuickBird pixels to the reference 
spectra. The algorithm determined the spectral similarity between 
the spectra by calculating the angle between the spectra and 
treating them as vectors in a space with dimensionality equal to the 
number of satellite bands. SAM compared the angle between the 
endmember spectrum vector and each QuickBird pixel spectrum 
vector in n-D space. Smaller angles represented in the dataset 
revealed closer matches to the reference spectrum. Pixels further 
away than the specified maximum angle threshold in radians were 
not classified. SID is a spectral classification method that uses a 
divergence measure to match pixels to reference spectra 
(http://www.exelisvis.com). The smaller the divergence, the more 
likely the pixels are similar. Pixels with a measurement greater than 
the specified maximum divergence threshold are not classified. In 
ENVI 4.6®, a spectrum plot, known as a z-profile, of the pixel under 
the cursor was run through all bands of the QuickBird image (Figure 
5). 

Additionally, in this research we used the Sequential Maximum 
Angle Convex Cone (SMACC) spectral tool in ENVI to determine 
the spectral endmembers and their abundances throughout the 
image. SMACC is designed to use a convex cone model (that is, 
residual minimization) to identify image endmember spectra 
(http://www.exelisvis.com). Extreme points were used to determine 
a convex cone, which defined the first S. damnsoum s.l. riverine 
larval habitat endmembers in the dataset. A constrained oblique 
projection QuickBird was then applied to the existing cone to derive 
the next larval habitat endmember. The cone was increased to 
include new endmembers. The process was repeated until a 
projection derived at endmember that already existed within the 
convex cone (to a specified tolerance) or until the specified number 
of endmembers were found.  

The image endmembers of the georeferenced, S.damnosum 
s.l.,riverine, larval habitat and its associated spatial, date, feature, 
attributes were then extracted them from ENVI®’s spectral library. 
Several spectra corresponding to the different backgrounds in the 
sampled, canopy-oriented, capture, point structures (that is, 
Precambrian rock and rippled water pixel components) had to be 
included, since multiple scatterings between floating leaves in the 
habitat, for example, and a bright soil background increased the 
QuickBird NIR reflectance. Leaf cells have evolved to scatter (that 
is, reflect and transmit) solar radiation in the NIR spectral region 
(Schowengerdt, 1997). After calibration, the spectrally defined 
covariate coefficient estimates from the image were converted to 
match the library. Analogously, the QuickBird reference 
endmembers spectra in the library was transformed into the 
endmembers spectra of the image. Image classification was then 
performed, employing the FLAASHTM object-oriented approach 
which rendered a gmd file that converted the image’s digital number 
(DN) to at-sensor radiance and computed at-sensor reflectance 
while normalizing the solar elevation  angle.  The  equation  was  as  
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follows: 
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where, 
 
BandN = Reflectance for Band N 
LbandN = DN for Band N  
D = Normalized Earth-Sun Distance 
EbandN = Solar Irradiance for Band N 
 
 
Spectral decomposition 
 
A predictive 3-Dimensional (D) radiative transfer equation 
employing the sampled S. damnosum s.l. riverine larval habitat 
spatial,data, feature attributes was constructed. In order to 
characterize larval, habitat, hotspot phenomenon effectively and 
obtain stable solutions of canopy, multiple scattering, the radiation 
field was decomposed into three parts; unscattered radiance 
 

[i.e., 
  ,0 

],  
 
single scattering radiance 
 

[i.e., 
  ,1 

],  
 
and the multiple scattering radiance 
 

[i.e.,
  ,   ,

 = 
  ,0 

 + 
  ,1 

 + 
  ,

]. 
 

A simple scheme was then represented by  
  ,0 

 which in this 
research was denoted by 1, which was neither scattered by the 
atmosphere nor canopy, but was reflected directly by the canopy 

surface. In this research,
  ,1 

 was radiance either scattered 
once by the atmosphere, denoted by 2, or once by the canopy, 

denoted by the value 3. Also
  ,

 was the most complicated 
spectral component, which included all of other riverine larval, 
habitat, canopy components in the radiation field of the coupled 

medium. Unscattered sunlight radiances 
  ,0 

 were then 
characterized by the following radiative transfer equation and 
corresponding boundary conditions. When T < Ta the S. damnosum 
s.l.,riverine, larval habitat, radiative transfer model rendered: 
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where
bot
a and  

top
c were  the optical depths at the bottom of the 

atmosphere and the top of the riverine, larval, habitat canopy, 
respectively. Here different notations were employed to indicate the 
physical meaning of   the  canopy  boundary  condition.  The  model 
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Figure 5. A Euclidean-distance matrix overlaid onto the georeferenced S. damnosum s.l. riverine habitat capture point.  

 
 
 

provided the upper boundary condition, which meant only parallel sunlight illuminated the atmosphere at the top in the direction 0
.  

When  
, the residuals were: 
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Jointly solving the equations with these boundary conditions, it was easy to obtain 
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where
  ,0

2 u represented the upwelling sunlight radiance within the georeferenced canopied S. damnosum s.l. riverine larval habitat 

capture point, and the function 
 ,

, due to modifying the extinction coefficient of the canopy. We then incorporated the extracted 
canopy radiance values including the Precambrian rock and ripple water spectral components using: 
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Where t0 was defined as 
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Since for single scattering radiances, unscattered sunlight becomes the scattering source (Kimes, 1991). In this research, boundary 
conditions were determined based on the fact that no incident single scattering radiances where from above the top of atmosphere or below 
the bottom of the canopy. When T < Ta the model rendered: 
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Thereafter, when  T > T the georeferenced S.damnosum s.l. riverine larval hábitat capture point spectral decomposition rendered: 
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Where 0i was the incident solar net flux arriving at the top of the riverine larval habitat canopy when  
 000 exp  ii

 

In the downward direction 
0

, the solution was easily derived. When T < Ta, the spectral decomposition model was solved using: 
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When t 
the model  was  solved using the equation: 
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Where t1iwas defined by the equations: 
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which was the single scattering  riverine larval habitat capture point canopy radiance emerging from the atmosphere without further scattering 
in the canopy. In the upward direction (p > 0), the solutions were a little more complicated because of the hotspot effect: 
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Where t2  was  defined using:
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and the second integration  as  Ta < T < Tt which in this research was 

explicitly obtained by means of an alternative intergrand range. This range was solved using:  
 

       000
0 exp, 


 


 G
i

F

. 

The radiance 
  ,1 

 at Ta < T < Tt needed to be numerically 
evaluated without further assumptions. An explicit approximation to 

  ,1 
 was then derived and used for inversion. 

In the spectral S.damnosum s.l.rivrerine larval habitat capture 
point endmember model the Gausse-Legendre quadrature was also 
employed to calculate the integration. An n-point Gaussian 
quadrature rule is a quadrature rule constructed to yield an exact 
result for polynomials of degree 2n − 1 or less by a suitable choice 
of the points xi and weights wi for i = 1,...,n. The domain of 
integration for such a rule is conventionally taken as [−1, 1], so the 
rule is stated as 

 

 
 
We we used the Li-Strahler geometric-optical model based on the 
assumption that the BRDF would retrieve S. damnosum s.l. habitat 
capture point shaded riverine canopy structural variables. The 
BRDF was defined by: 
 

    
 
Where L was the radiance, E was the irradiance, and θi was the 
angle made between ωi and the riverine habitat and its associated 
Precambrian rock and ripple water surface reflectance emissivities. 
Because the BRDF is a four-dimensional function that defines how 
light is reflected at an opaque surface (Jensen, 2005), the function 
in our model took an incoming light direction, ωi, and outgoing 
direction, ωo, which were both defined with respect to the 
georeferenced S. damnosum riverine larval habitat and its 
neighboring Precambrian rock and ripple water surface n, and 
returned the ratio of reflected radiance exiting along ωo to the 
irradiance incident from direction ωi. Note, each direction ω was 
itself parameterized by azimuth angle φ and zenith angle θ, 
therefore,    in  this  research,  the  BRDF  was  4-dimensional.  The  
BRDF had units sr−1, with steradians (sr) being a unit of solid angle. 

 
The inverted Li-Strahler geometric-optical model was then used 

to retrieve specific spectral habitat explanatory predictor covariate 
coefficient estimates. The reflectance associated with a 
georeferenced habitat was treated as an area-weighted sum of four 
fixed radiance components: sunlit canopy, sunlit background, 
shaded canopy, and shaded background. In most arthropod-related, 
infectious disease, larval, habitat–related, geometric-optical, 
simulation models these four components could be simplified to 
three: sunlit canopy–C, sunlit background–G and shadow–T (Jacob 
et al., 2011c). In this research, the endmember spectral 
components were derived using G, C, T components’ classes which 
were initially estimated by the QuickBird image using ENVI®. For 
inverting the model, parts of the three spectral components were 
then represented by (kg) which was calculated using: 
 

       ,,secsec vivi OM
g eK      

  (3) 
 

    tttO vivi cossinsecsec1,,    
  (3) 
 

 vi

vi

r

h
t




secsec

costantan
cos




     

  (4) 
 

 
  ttt

K
M

vi

g

sincossecsec

ln






   

  (5) 
 

MeCC  1       
  (6) 
 
Where, I q u q were the zenith angles of illumination and viewing, O 
was the average of the overlap function between illumination and 
viewing shadows of  the capture point and their associated 
Precambrian   rock    and    ripple  water   spectral  components  as  



366          J. Public Health Epidemiol. 
 
 
 
projected onto the background. In this research, j was the difference 
in azimuth angle between illumination and viewing. 

In our  analyses, the BRDF of the larval habitat capture point 
mixel was modeled as the limit of its directional reflectance factor 
using: 
 

 viR , :  
     

vi

viA
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(7)  

Where ds  was a small Lambertian surface element over area A  

of the QuickBirdmixel;  sR  was the reflectance of ds ; i , v , and 

s  represented the directions of illumination and viewing based on 
the Precambrian rock  surface and  ripple water  reflectance 

components, respectively. In the model .,. was the cosine of the 

phase angle between two directions;   was the zenith angle of a  
 
 

 
 
 
 

direction;  sIi  and  sIv  were indicator functions, equal to one 

when ds  was illuminated  iI  or viewed  vI  or zero otherwise. 

If a surface exhibits Lambertian reflectance, light falling on it is 
scattered such that the apparent brightness of the surface to an 
observer is the same regardless of the observer's angle of view, 
thus, the surface luminance is isotropic (Schowengerdt, 1997).  

Lambert's cosine law states that the radiant intensity or luminous 
intensity observed from an ideal diffusely reflecting surface or ideal 
diffuse radiator is directly proportional to the cosine of the angle θ 
between the observer's line of sight and the surface normal 
(Pedrotti  and  Pedrotti,  1993). In this research the luminous 
intensity of the geo-refernced S. damnosum s.l. riverine larval 
habitat model endmember point varied by direction. We then 
defined with peak luminous intensity in the normal direction using 
the cosine law. As the Lambertian assumption held, we then  

calculated  the total luminous flux, , from the peak luminous 
intensity by integrating the cosine law: 

 

        
 
 

and so where  was  the determinant 

of the Jacobian matrix for the unit sphere, and is was the 
luminous flux per steradian. In vector calculus, the Jacobian matrix 
is the matrix of all first-order partial derivatives of a vector- or 
scalar-valued function with respect to another vector (Cressie, 

1993). Similarly, the peak intensity was of the total 
radiated luminous flux. For quantitation of the Lambertian surfaces, 
the same factor of related the larval habitat luminance to 
luminous emittance, radiant intensity to radiant flux, and radiance to 
radiant emittance. Solvingour double integral equation revealed s 

that ds  was integrated over the decomposed QuickBird mixel (that 
is, the footprint of the sensor’ sinstantaneous field of view (iFOV)) . 

In this research, there were two kinds of prominent habitat 

surfaces in the sub-mixel spectra; A -background surface (that is, 
Precambrian rock) and surface ripple water-which were represented 

by Lambertian reflectance G  and C , respectively. We then re-
wrote equation (7) as: 
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where AAK gg   which was the proportion of background 

spectral data illuminated and viewed by the georefernced, 
QuickBird, imaged, S. damnosum s.l., riverine, larval, habitat, 

capture points attributes. In this equation the union of gA  and cA  

were the intersection of the dataset of the larval, riverine, habitat, 
capture, point, surface elements which were illuminated and 
viewed, only when v  and i  coincided. The directional reflectance 
of the habitat scene depended also on the Precambrian rock and 

ripple water reflectance values related to G andC .   
 
In our analyses we focused on the two terms of 

  ds
svsi

A

C
GKviR
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vi

g  
 cos

,

cos

,
, . The first term described 

how the sunlit background proportion proceeded to a maximum 
point as viewing and illumination positions in the hemisphere 
coincided. The second term in the model described how the sunlit 
S. damnosum s.l.riverine larval habitat capture point surface 
composed of the Lambertian facets, became maximally exposed to 
view at the hotspot, while those facets on tops became dominant at 
large viewing zenith angles. The hot spot correlation effect refers to 
the observed brightening which can occur when viewing a scene 
from the same direction as the solar illumination (Burrough and 
McDonnell, 1998) which for robust, predictive, spatiotemporal, 
arthropod-related, infectious disease modeling is commonly noted 
in the visible and NIR spectral regions (Jacob et al., 2011a). We 

then analyzed how the first term GKg  varied with illumination and 

viewing geometry. As in Strahler and  Jupp (1990), we assumed 
that the  spatial object of interest (that is,  S. damnosum s.l. habitat) 
and its associated georeferenced, explanatory, spectral, predictor, 
covariate coefficient  had the shape of a spheroid, with vertical half-

axis equal to b , horizontal radius equal to R , and a height to the 

center of the spheroid h . To accommodate the spheroidal shape in 
the derivations of the shadowed,riverine, larval,habitat areas, we 

used the transformation 
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b
.  We solved this 

equation by replacing   with the angle that would generate the 
same shadow area for a sphere. For simplicity, we assumed that 
the centers of the spheroids were randomly distributed in depth 

from 1h  to 2h over A . We then assumed that G  and C  were 

constants and also they were as average signatures over gA  and 

cA  for properly modelling gK and AAK cc  . Next, the 

equation   ds
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,    was   employed   
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Figure 6. Object-based ENVI classification of the Dienkoa-Chutes riverine breeding study site. 

 
 
.

whereby gK   was expressed  in a Boolean model and 

   ,,secsec2
vivi OR

g eK   where  ,,,  viO   

represented the average of the overlap function  hO vi ,,,   

between illumination and viewing shadows of the  spatiotemporal, 
field-sampled, S. damnosum s.l., riverine, larval, habitat, capture 
point and its associated within-canopy structures (for example, 
Precambrian rock and spectral ripple water components). 

Furthermore,   was the difference in azimuth angle between 

viewing and illumination positions of the QuickBird classified objects 
associated to the geo-refernced capture point habitat. To simplify 
the equation, we approximated the overlap function by the overlap 
area and center positions of the ellipses. This approximation is 
justified when solar zenith and viewing zenith angles are not too 
large (Strahler and  Jupp, 1990). In the case of long ellipsoidal 
shadows, however, this approximation could have overestimated 
the width of the riverine, habitat capture point hotspot in the 
Azimuthal direction and underestimated the width of the hotspot in 
the Azimuthal direction. To improve the accuracy and to preserve 
the proper hotspot width information, we developed another 

approximation as follows. We used the equations 0 or    

First, we considered the overlap function in the principal plane. We 

used W 0 or   as the elliptical illumination and then viewed 

shadows that were aligned in the same direction. The overlap area 
was approximated by an ellipse with one axis equal to the overlap 
length and the other equal to the georeferenced, S. damnosum 
s.l.,riverine, larval, habitat, width, encompassing the Precambrian 
rock and ripple, water, mixel, spectral components which yielded 
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. By so doing, we were  able  to  determine  the  waveband  spectral 

signature for the riverine larval habitat based on a scattergram 
(Figure 6). 
 
 
Interpolation analyses 
 
Multiple, spatial, explanatory, linearized predictors were then 
generated from the S. damnosum s.l .riverine, larval, habitat, 
capture point, spatiotemporal-endmembers and its associated 
Precambrian rock and rippled water spectrally decomposed 
components using an ordinary kriged-based interpolator. The 
algorithms for our interpolation have already been described in  
 
Jennsen (2005). Briefly, in this research, the dependent variable 
was the residualized, spectral, emissivity, estimates, rendered from 
the decomposition of the QuickBird mixel which was transformed to 
fulfill the diagnostic normality test prior for performing the kriging. 
Ordinary kriging was selected to interpolate the value Z(x0), an S. 
damnosum s.l. riverine larval habitat capture point canopy and its 
associated Precambrian rock and spectral ripple water 
components,Z(x), at an unobserved, habitat, location x0 from the 
field and remote-sampled, explanatory, predictor, covariate, 
coefficient estimates and zi = Z (xi), i = 1..., n at nearby habitat 
locations, x1, xn. In this research, ordinary kriging was computed as 
a linear unbiased estimator, Ž(xo) of Z(x0) based on a stochastic 
model of the  dependence quantified by the variogram γ(x,y) and by  
the expectation μ(x) = E[Z(x)] and the covariance functionc (x,y) of 
the random field. The kriging estimator was given by a linear 
combination of the algorithm: 
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employing the spectral, riverine, 
larval, habitat, endmember dataset of zi = Z(xi) with weights wi (xo), i 
= 1,...,n chosen, such that the variance in the spectral 
autoregressive model was calculated using: 
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which was further minimized using: 
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Spatial analyses 
 
An autoregressive (p) model was then constructed in SAS/GIS, 

thereafter using where 

 were the georeferenced study site geosampled 
parameter estimators,  was a constant, and the random variable 
and  was white noise. An AR is essentially an all-pole infinite 
impulse response filter with some additional interpretation placed 
on it (Griffith, 2003). In this research, some constraints were 
necessary on the values of the parameter estimators of the model 
in order that the residuals remained stationary. For example, 
processes in the autoregressive models generated at each 5 km 
interval from the capture point with |φ1| ≥ 1 were not stationary. The 
notation MA (q) was then also constructed to the moving average 
model of order q: 
 

 
 
Where the θ1, .., θq were the riverine  estimators, μ was the 

expectation of  (often assumed to equal 0), and the , 
,...were white noise error terms. In this research the notation 

ARMA (p, q) referred to the model with p autoregressive terms and 
q moving-average terms. This model contained the AR (p) and MA 
(q) models which was expressed as: 
 

 
 
In this research, the error terms  were assumed to be 
independent identically distributed (i.i.d.), randomized, variables, 
sampled from a normal distribution with zero mean: ~ N(0,σ2). 
The spatially-dependent, transmission-oriented, endemic, models 
were then specified in terms of the lag operator L. In these terms 
then the AR (p) models was provided  by: 
 

 where represented the 

polynomial . 
 
The MA(q) model was then  given by the equation 

where θ represented the polynomials. 
Finally, the combined ARMA (p, q) endemic models  were  provided   

by: 
 

or more 

concisely,  
 
Thereafter, a misspecification perspective for the estimation, 
endemic, transmission-oriented, risk based, distribution model was 

constructed in SAS/GIS using 
*  Xy  (that is, regression 

equation) for decomposing 
* , into a white-noise component, , 

(that is, autocorrelation-oriented disturbances) and a set of 
unspecified and/or misspecified sub- models that had the 

structure

*




 EXBy . White noise in a spatiotemporal-

sampled, arthropod-related, infectious disease, larval, habitat, 
epidemiological, risk model is a univariate or multivariate discrete-
time stochastic process whose terms are i.i.d. with a zero mean 
(Jensen, 2003). 
 
 
RESULTS 
 
Initially, we constructed a Poisson regression models 
using the spatiotemporal-sampled, district-level, 
covariate, coefficient, measurement values to determine 
covariate coefficients of significance with each ArcGIS 
classified Euclidean-distance dependent zone. Our model 
was generalized by introducing an unobserved 
heterogeneity term for each spatiotemporal, field-
sampled, S. damnosum s.l. related, riverine, larval, 
habitat observation . The weights were assumed to differ 
randomly in a manner that was not fully accounted for by 
the other time series-dependent covariate coefficients. In 
this research this process was formulated as 

 where the unobserved 

heterogeneity term  was independent of the 
vector of regressors  for each ArcGIS delineated 
onchocerciasis, endemic, transmission zone. Then the 
distribution of  was conditional on  and had a Poisson 
specification with conditional mean where the conditional 
variance was: 
 

 : .  
 
We then let  be the probability density function of . 
Then, the distribution  was no longer conditional 
on . Instead it  was  obtained  by  integrating    
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with respect to : .  We then found that an analytical solution to this integral existed in 
the Poisson-relatedendemic model when  was assumed to follow a gamma distribution. The models also revealed 
that , was the vector of the sampled covariate coefficients while , was independently Poisson distributed with: 
 

   
and the mean parameter, that is, the mean number of sampling events per spatiotemporal period was given by 

 where  was a  parameter vector. The intercept in the model was then   and the coefficients 

for the  regressors were . Taking the exponential of  ensured that the mean parameter  was non-

negative. Thereafter, the conditional mean was provided by . The parameter estimators were 

then evaluated using . Note, in this research, that the conditional variance of the count 
random variable was equal to the conditional mean (that is, equidispersion) (  ). In a log-linear 
model the logarithm of the conditional mean is linear (Hosmer et al., 2002). The marginal effect of any district-level, 
explanatory regressor in the models was then provided by: 
 

  
 
In the model we noticed that a one-unit change in the th regressor led to a proportional change in the conditional mean  
 

of  
 

Further, we found that given the Poisson process in our endemic, transmission-oriented, risk-based model, the limit of 
the binomial distribution in the sampled parameter estimators was: 
 

  
 

Viewing the distribution as a function of the expected number of successes [ ] instead of the sample size N for 
fixed ,  transformed the  equation to: 
 

  
 
As the sample size  become larger, the distribution then approached P when: 
 

, , , 

and   
 
Note that the sample size N had completely dropped out of the probability function, which had the same functional form 
for all values of v. Next, the moment-generating function of the Poisson distribution was provided by:  
 

M = , M=  and M= , when R= , R’=  so R=  . 
 
The raw moments were also computed directly by summation, which yielded an unexpected connection with the 
exponential polynomial  and the stirling numbers of the second kind  
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which in this research was represented as Dobiński's formula for the Bell polynomial and Bell numbers. This  
 

generalized formula revealed  where  was a Bell polynomial .Setting gives the special 

case of the th Bell number, . The  formula was derived by dividing the generating function formula for a 

Stirling number of the second kind  and by quantitating by , yielding . Then: 
 

 and  (Roman, 1984). 
 

Then in the endemic Euclidean distance–based models:   ,  and  
 
We then tested the model for over-dispersion with a likelihood ratio test based on the linear distributions. This test 
quantitated the equality of the mean and the variance imposed by the Poisson distribution against the alternative that the 
variance exceeded the mean. For the negative binomial distribution, the variance = mean + k mean2 k > = 0 and the 
negative binomial distribution reduces to Poisson when k = 0 (Haight, 1967). The probability mass function of the 
negative binomial distributions with a gamma distributed mean was then expressed as: 

 

 
 
In this equation, the quantity in parentheses was the binomial coefficient, and was equal to: 
 

  
 
In this research, this quantity was also alternatively written as: 
 

 
 

for explaining “negative binomialness’ in the onchocerciasis, endemic, transmission-oriented, risk model. Results from 
both a Poisson and a negative binomial (that is, a Poisson random variable with a gamma distrusted mean) revealed 
that the explanatory, predictor, covariate coefficients were highly significant, but furnished virtually no predictive power. 
In other words, the sizes of the population denominators were not sufficient to result in statistically significant 

relationships, while the detected relationships were inconsequential. For fitting, the likelihood wa sprovided by: 
 

  (that is, ) 
 

where C wasa constant independent of the model and dependent only on the use of particular data points (that is, it 
does not change if the data do not change). In this research we employed a correlation analysis method to check the 
cross correlation between the input and output signals as an estimation of the impulse response, as shown by the 
following equation: 
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The input signal must be zero-mean white noise with a spectral density that is equally distributed across the whole 
frequency range (Cressie 1993). The SI estimate impulse response VI can prewhiten input signals that are not white 
noise (Hosmer et al., 2000). Thus, assuming the input u(k) of the system was stochastic process and statistically 
independent of the disturbance e(k), we assumed the following equation was true: 
 

 
 
When Ruy represented the cross-correlation function between the stimulus signal u(k) and the response signal y(k), as 
defined by: 
 

   
 
When Ruu represented the autocorrelation of the stimulus signal u(k), as defined by the following equation: 
 

 
 
We employed N as the number of sampled, onchocerciasis-related, endemic, transmission-oriented, risk-based, 
georeferenced data points. If the stimulus signal is a zero-mean white noise signal, the autocorrelation function reduces 

to the following equation. where σu is the standard deviation of the stimulus white noise and δ(τ) is the 
Dirac function (Cressie, 2993). Thereafter, we substituted Ruu(τ) into the cross-correlation function between the stimulus 
signal u(k) and the response signal y(k) which yielded the following equation: 
 

 
 
We rearranged the terms of this equation to obtain the following equation defining the impulse response: 
 

 h(k).  
 
The correlation analysis method then estimated the impulse response to be robust but only when the input signal u(k) 
was a zero-mean white noise signal. However, the input signal is not white noise in most real-world applications 
(Cressie, 1993). Therefore, we preconditioned the input u(k) and output y(k) signals before we  applied them to our  e 
correlation analysis method. We then generated a set of k + 1transmission-oriented risk based data points 

 where no two xj were the same employing an interpolation polynomial in the Newton form. By 
so doing, a linear combination of Newton basis polynomials: 
 

 [That is, ] with the Newton basis polynomials was defined as for  and 

. The coefficients were then defined as  where which in this research was 
represented using the notation for divided differences. As such, the endemic, transmission-oriented, Newton polynomial 
was then written as  
 

  
 
The Newton polynomial was then expressed in a simplified form when  which in this research was   
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arranged consecutively with equal spacing. Introducing the notation  for each  

and , then rendered the difference  which was then re-written as . So the 
onchocerciasis, endemic, transmission-oriented, Newton polynomial became: 
 
 

which in this research was: 
 
 

    
 
(that is, Newton forward divided difference formula). The polynomial interpolation was then used to construct the 

polynomial of degree   that passes through the n+1 sampled 

points ,  for  .  If multiple "centers"      are used, then the result 

is the so called Newton polynomial (Hosmer et al., 2000). We then assumed that   and   

for    were distinct spatiotemporal-sampled values. Then where was a 

polynomial which in this research was used to approximate and also: 
 

.  
 

Thereafter, we wrote  . Our model revealed that the Newton polynomial went through the  

onchocerciasis, transmission–oriented, risk-based, sampled epidemiological points , (that is, 

    for   ) . The remainder term   had the form: 
 
 

 , for any model parameter estimator value 

when such that lay in the interval .  The covariate coefficients    were then constructed using divided 
differences. 

In this research, the divided differences for a function  in our onchocerciasis, endemic, transmission-oriented, 
risk-based, landscape, distribution, epidemiological  model were defined as: 
  

  , ,
 

 
and also 
 

 
 
 
The divided difference formulae were then used to construct the endemic, transmission-oriented, risk-related, 
epidemiological model divided difference table as: 
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; , ,

, , ,

,  

 
 

 
 
The coefficient of our endemic, transmission-oriented, risk-based, landscape, distribution model was then directly related 

to the Newton polynomial  when  was  . The coefficient also was the top element in the 
column of the i-th divided differences. The Newton polynomial of degree ≤ n   then passed through n+1,  risk-based, 

sampled points (that is,   ,  for  ) which was  then quantitated as: 
 

.  
 

The form the Newton polynomials of degree for the function   over the interval   was then used 
along with equally spaced nodes selected from the following list: 
   

and so on.   Thereafter, 
we let: 
 
 

 and as such:    where  was a divided difference, 

and the remainder was: for  (Figure 7). 
 
 
The error terms corresponding to these  onchocerciasis, endemic, transmission-oriented, explanatory, risk-based 
landscape model had the following useful bounds on their magnitude:  
 

(i).   which was valid for ,   
 

(ii).   which was valid for  ,  
 

(iii).       which was valid for  ,   
 
 

(iv).       which was valid for ,   
 

(v).       which was  valid for   
 

The seasonal-sampled onchocerciasis related-endemic, transmission-oriented, polynomials of Newton basis  were 
then defined by: 
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Figure 7. An endmemberspectral signature of the georeferenced S. damnosum s.l. riverine habitat capture point. 

 
 
 

 
 
Figure 8. A cubic curve below illustrating the risk-based Newton polynomial of degree n=3. 
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employing  the following convention: . Moreover 
 

. 
 

The set of robust  transmission-oriented, risk-based, epidemiological polynomials [that is, ] were the  basis of  
PN , which in this research  represented  the space of  polynomial of degree and was  at most  equal to n. Indeed, they 

constituted an echelon-degree set of polynomial. Newton interpolation of degree n in this research was 
thereafter related to the subdivision 

 =  where 

 
 

We  then determined the explanatory, predictor, covariate coefficients  using divided differences. Newton’s 

interpolation polynomial of degree , ,  were then evaluated at  rendering: 
 

  
 

We then re-wrote as a zero-order divided difference.  The onchocerciasis –related, 

Newton’s interpolation, polynomial of degree , was then  evaluated at  rendering: 
 

 
 
 

Hence: .  
 

In  our model was the first -order divided difference. The interpolation polynomial of degree nPn(x)was then 

evaluated at  rendering: 
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Then:  
 

 
 

and   
 
The final following form of the polynomialized,onchocerciasis-related, regression-based,parameter estimators was then: 
 

   
 

Hence, in this research,  was the second-order divided difference. By 
recurrence, we then obtained: 
 

  which was then the kth-order divided difference. The Newton’s 
interpolation polynomial of degree was then obtained via the successive divided differences: 

 .  
 
Thereafter, for quantizing interpolation error in our model, we assumed that: 
 

 and .   
 
We then let I be the closed set defined by: 
 

 (that is, the smallest closed set containing and the ’s). We employed: 
 

 then we let:   
 
The quantized, interpolation, error factor and its complement were then: 
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  and  where, were unsigned; {that is, ].  
 

The interpolated coefficient then rendered  

and  when the second-order errors Vԑ0andVԑ1were 

dropped. Since , we obtained the error bound for the onchocerciasis-related endemic 

transmission-oriented model using:   

By successively applying Rolle’s theorem (ntimes) in the spatiotemporal, infectious disease model, equaled zero 

at any given sampled point :  Thus, we had: . Since the seasonal-sampled, 

onchocerciasis, explanatory, covariate coefficients of xn in Pn in this research was , 

 hence . 
 
In calculus, Rolle's theorem essentially states that a differentiable function attains equal values at two distinct points 
which must have a point somewhere between them where the first derivative (that is, the slope of the tangent line to the 

graph of the function) is zero (Ross, 2007). We then assumed that:  and   in the transmission-

oriented, risk-based, epidemiological, risk model .We then let I be the closed set defined by:   

(that is, the smallest closed empirical data set containing x) and then solved for: We then let and then 

assumed that  for performing a Lagrange polynomial interpolation for mapping 

=  the endemic, transmission-oriented regions within the 
riverine study site. In numerical analysis, Lagrange polynomials are used for polynomial interpolation. For a given set of 
distinct points  and numbers , the Lagrange polynomial is the polynomial of the least degree that at each point  
assumes the corresponding value  (that is, the functions coincide at each point) (Cressie, 1993). We then considered 
the unique polynomial Pn+1 of degree (n+1) which interpolated f at the transmission-oriented, risk-based, regression 
points [that is, 
 

] and  which verified: 
 

 
 

The polynomial  was then  written as:   
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According to our model , therefore,  by setting the expressions:  
 

, , . 
 

In our analyses we found three 3 data points , which determined the Newton interpolation 
polynomial of degree 3 which passed through the following points: 
 

,  
 
which represented the: 
  
 

 
 
0 (that is, capture point) from 0 to 5 km hyperendemic range, 5 to 10 km. Thereafter, a mesoendemic range was 
measured from 5 to 10 km, 10 to 15 km was hypoendemic and after 15 km no transmission. 

To validate the Newton polynomial that passed through the transmission-oriented endemic points  we 

tested   which in this research was performed where: 
 

   and  

 
 
Newton polynomials were then created "recursively." employing: 
 
 

 . 
 

The divided difference , was then denoted ), whereby the transmission-
oriented risk-based points, , , ...,  of a function  was defined by  and 

for . The first few differences were quantitated using: 
 

= , =  and then: 
 

   
 
Thereafter, we defined: 
 

 and then solved  which  

rendered the identity:   



 
 
 
 
 
All the time series-dependent, riverine, spatial, data, 
feature, attribute points based on the QuickBird mixel 
encompassing the Precambrian rock and rippled water 
components were then examined in n-dimensional space.  
A meaningful endmember spectrum for the vertex was 
calculated from the radiative transfer model residuals 
employing the vector Euclidean norm to the subspace as 
defined by the selected, georeferenced, S. damnosum 
s.l.,riverine, larval, habitat, capture point Precambrian 
rock and rippled water spectral endmembers. To find 
these candidate mixel spectra, we constructed a 
QuickBird endmember dataset using P possible, 
consisting of r sub- mixel spectral emissivities that were 
closest to the vertex. Then we generated an spectral 
endmember subset using 

 which was selected from the r pixels ( ) which 

was subject to conditions based on:  

and . We used the equation 

 as the spectral 

angle between the epidemiological capture point, 
Precambrian rock and ripple water sub-mixel radiance 
and calculated 

 

where t_θ was the threshold value for the spectral angle 
beyond which the endmember spectra were not 
considered similar. The value of t_θ was set at 2.5 
degrees. The unmixing algorithm identified  

the brightest, sub-mixel, data, feature attribute (i.e., ripple 
water pixel components) and the darkest, sub-mixel, data 
attribute (that is, Precambrian rock). The algorithm then 
iteratively found the remaining endmembers using 
orthogonal projections until the number of endmembers 
defined was obtained.  

A number of Precambrian rock, ripple water 
components and the sampledS. damnosum s.l.riverine, 
larval, habitat, capture point, and the endmembers (m) 
were used to find the spectral angle threshold t_θ and the 
spatial threshold (that is, t_θ QuickBird mixel) in the SPA 
algorithm. The first step was to extract the first 
endmembers. The vector norms of the QuickBird sub-
mixel data determined the largest norm value. Sub-mixel 
heterogeneity at the simplex vertices were then 
calculated which revealed the radiance data in the image 
cube. The capture point first endmember was estimated. 
We then used an orthogonal projection for extraction of 
all the other related endmember, sub-mixel, S. 
damnosum s.l.,riverine, larval, habitat, capture point 
Precambrian rock and ripple water spectral components. 
All the QuickBird, sub-mixel, spectral data was then  
fractionally calculated based on the visible and NIR 
spectrum.    We     used      an        endmember     matrix  
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 which projected the QuickBird sub-mixel 

data into subspace .We noticed that Sproj was orthogonal 
to the space spanned by U as , where 

 and  were the projected and original mixel 

vector at the georeferenced  capture point location , 

respectively.  
In this research,  was the projection operator, 

where I was the identity matrix and U + was 
the pseudo inverse of U, which was denoted by 

? We then validated the endmember 

matrix (that is, ). We calculated the 

change of the simplex volume with each subspace 
projection. The volume of the simplex was then derived. 
The volume increase was determined by the spectral 
contrasts between the endmembers. Here,  and  

denoted the simplexes defined by the original 
endmember set,    and the ratio of the 

volumes of  and  was calculated as 

. . . Each S. damnosum s.l. 

riverine habitat endmember proportion was then 
calculated. 

In our analyses, the BRDF of the decomposed S. 
damnosum s.l. habitat mixel using the geometric-optical 
model was modeled as the limit of its directional 
reflectance factor using: 

 

  viR , : 

 
     

vi

viA

A

dssIsIsvsisR
viR

cos

,,
,  

 
 (8)  
 
Where ds  was a small Lambertian surface element over 

area A of the QuickBirdmixel;  sR  was the reflectance 

of ds ; i , v , and s  represented the directions of 
illumination and viewing based on the Precambrian rock  
surface and  rippled water,spectral,reflectance 

components, respectively. In our model 
.,.

was the 

cosine of the phase angle between two directions;   was 

the zenith angle of a direction; 
 sIi  and 

 sIv  were 

indicator functions, equal to one when ds  was 

illuminated 
 iI  or viewed 

 vI  or zero otherwise. If a 
surface exhibits Lambertian reflectance, light falling on it 
is scattered such that the apparent brightness of the 
surface to an observer is the same regardless of the 
observer's angle of view, thus, the surface luminance is 
isotropic (Schowengerdt, 1997). Solving the double 

integral equation revealed that ds  was integrated    over 
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the decomposed QuickBird mixel [that is, the footprint of 
the sensor’s  instantaneous field of vision (iFOV)]. We 
noticed that there were two kinds of prominent riverine 
larval habitat surfaces in the sub-mixel, endmember, 

spectra; A-background, surface (that is, Precambrian 
rock) and spectral ,surface-oriented,  ripple, water, data, 
feature attributes were represented by Lambertian 

reflectance G  and C , respectively. We then re-wrote 
equation (8) as: 

 

   ds
svsi

A

C
GKviR

cA
vi

g  
 cos

,

cos

,
, , where 

AAK gg   was the proportion of background spectral 
data illuminated and viewed rendered by the QuickBird 
imaged capture point attributes. In this equation the union 
of Ag and Ac were the intersection of the dataset of the 
capture point surface elements which were illuminated 

and viewed, only when v  and i  coincided. The di-
rectional reflectance of the habitat scene depended also 
on the Precambrian rock and ripple water reflectance 
related to G and C.   

In the mixel decomposition we focused on the two 
terms of: 
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GKviR
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The first term described how the sunlit background 
proportion proceeded to a maximum point as viewing and 
illumination positions in the hemisphere coincided. The 
second term described how the sunlit S. damnosum 
s.l.riverine larval habitat surface, composed of the 
Lambert Ian facets became maximally exposed to view at 
the hotspot, while those facets on tops became dominant 
at large viewing zenith angles. The hot spot correlation 
effect refers to the observed brightening which can occur 
when viewing a scene from the same direction as the 
solar illumination (Burrough and McDonnell, 1998)  which 
for predictive, vector, insect habitat, predictive, risk 
modeling is commonly noted in the visible and NIR 
spectral regions (Jacob et al., 2011a).   

We then analyzed how the first term KgG varied with 
illumination and viewing geometry. As in Strahler and 
Jupp (1990), we assumed that the  spatial object of 
interest (that is, S. damnosum s.l. habitat) and its 
associated explanatory sub-mixel spectral,  predictor, 
covariate, coefficient estimates had the shape of a 
spheroid, with vertical half-axis equal to b, horizontal 
radius equal to R and a height to the center of the 
spheroid h. To accommodate the spheroidal shape in the 
derivations of the shadowed habitat areas, we used the 
transformation: 
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We solved this equation by replacing   with the angle 
that would generate the same shadow area for a sphere. 
For simplicity, we assumed that the centers of the 
spheroids were randomly distributed in depth from h1 to 
h2 over A. We then assumed that G and C were constant 
average signatures over Ag and Ac for properly 
endmember modelling Kg and Kc = Ac/A. 

Next, the equation: 
 

 
  ds

svsi

A

C
GKviR
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vi

g  
 cos

,

cos

,
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was employed where Kg was expressed in a Boolean 

model and 
   ,,secsec2

vivi OR
g eK 

 where 

 ,,,  viO  was the average of the overlap function 

 hO vi ,,,   between illumination and viewing shadows 
of the georeferenced capture point and its associated 
Precambrian rock and ripple water features. The Boolean 
model for a random subset of the plane or higher 
dimensions, analogously is a common tractable models 
in stochastic geometry (Cressie, 1993). Jacob et al. 
(2011c) used a Poisson point process of rate λ in the 
plane of a spectrally, decomposed, georeferenced, 
aquatic, larval, habitat,of An. arabiensis, and then made 
each sampled point be the center of a random set. The 
resulting union of the overlapping sets was a realization 
of the Boolean model [ ]. More precisely, the spectral 
parameter estimators were λ. Then a probability 
distribution on compact sets was created for each 
sampled point ξ employing a Poisson point process which 
used a set Cξ from the distribution, and then defined  

as the union  of the translated sets. To 
illustrate tractability with one simple formula, the mean 
density of  was then defined by a QuickBird sub-mixel 
endmember classification which revealed that 

 where Γ denoted the sampled S. 
damnosum s.l. riverine habitat surface area of Cξ.  

In this research,   was the difference in Azimuth angle 
between viewing and illumination positions of the 
QuickBird imaged objects associated to the S. 
damnosum s.l., riverine, larval, habitat capture point. To 
simplify the equation, we approximated the overlap 
function by the overlap area and center positions of the 
ellipses. This approximation is justified when solar zenith 
and viewing zenith angles are not too large (Strahler and 
Jupp, 1990).  In the case of long ellipsoidal shadows, 
however, this approximation could have overestimated 
the width of the capture point hotspot in the Azimuthal 
direction and underestimated the width of  the  hotspot  in  



 
 
 
 
the Azimuthal direction. To improve the accuracy and 
preserve the proper hotspot width information, we 
developed another approximation as follows. We used 

the equations 0 or    .  First, we considered the 
overlap function in the principal plane. We used W 

0 and   as the elliptical illumination estimates to 
determine if all the viewing shadows were aligned in the 
same direction. The overlap area was then approximated 
by an ellipse with one axis equal to the overlap length 
and the other equal to the capture point width 
encompassing the Precambrian rock and ripple water 
mixel spectrally decomposed radiance components which 
yielded: 
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In the geometric-optical model, the shape of the 
hotspot function was based on the viewing and 
illumination positions in the model, and these diverged 
due to the shape and height of the spheroids. The 
“hotspot” was defined as a site with a combination of 
Precambrian rock and turbid water, sub-mixel, 
endmember data associated with S. damnosum s.l. larval 
breeding habitat. The equation S = (AgG + ACC + AZZ + 
AtT) IA, where S represented the reflectance of the 
QuickBird  mixel; G, C, Z, and T were the reflectances of 
sunlit ground and shadowed ground and canopy, 
respectively; Ag through A were the corresponding areas 
of the four components; and A was the mixel size, and 
was helpful to understand how the physical shape of the 
S. damnosum s.l. riverine habitat, Precambrian rock and 
riffle water components governed the shape of the 
overlap functions. The exact overlap function on the 
principal cone was also obtained using the hybrid of the 
geometric optical model for capturing bi-directional 
reflectance values over the riverine larval habitat 
attributes.  

In the model, the viewing zenith was the viewing 
direction, which had a different Azimuth than the 
illumination position.  Rather than computing the overlap 
of ellipses rendered from the S. damnosum s.l. habitat, 
the Precambrian rock and its riffle water spectral 
components at arbitrary inclinations and distances 
directly, we fit a linear function to the diminution of the 
overlaps generated from the model residuals using 
Azimuth angles. We approximated the Azimuthal cut off 
of the hotspot and linearly interpolated the model 
residuals. The residual output from the equation was then 
used to determine that; (1) the Azimuthal width of hotspot 
effect was basically determined by a ratio; (2) the 
outward width of hotspot on the principal plane was 
determined by ratio, and; (3) the inward width was 
determined by  both. The  composition  of  this  signature  
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was 34% red, 11% blue and 55% green. This signature 
corresponded to habitats consisting of fast flowing water 
over a base of Precambrian rock.   

We then employed an ordinary kriged-based algorithm 
in ArcGIS Geostatistical Analyst for predicting other 
unknown, unsampled S. damnosum s.l. habitats at the 
study site using the reference signature generated from 
the canopy endmember extraction algorithms. For deter-
mining optimal explanatory predictor covariate co-
efficients, a variogram was constructed which expressed 
the variation in the spectral estimatators. In this research 
the variogram [that is, 2γ(x, y)] was a function describing 
the degree of dependence between the 
predictedgeoreferenced S. damnosum s.l. riverinelarval 
habitats [i.e., Z(x)]. This was defined as the expected 
squared increment of the forecasted values between the 
forecasted georeferenced habitat locations. Our model 
was nonnegative since it was the expectation of a 
square. The covariance function was related to variogram 
by 2γ(x,y) = C(x,x) + C(y,y) − 2C(x,y). In this research, 
the γ(x,y) = E( | Z(x) − Z(y) | 2) was equivalent to γ(y,x) 
which was a symmetric function, consequently, γs(h) = γs( 
− h) was an even function. In this research, the function 
was also a semivariogram as it was a conditionally 
negative definite function, (i.e., for all weights 

subject to ) and the S. 
damnosums.l. habitat geolocations ( ); thus,  

 

.  
 
Semivariogram plot of the logit scale model residuals 
confirmed a short range spatial pattern up to a distance 
of approximately 20 km from the predicted S. damnosum 
s.l.,riverine, larval, habitat site. To carry out this process, 
residuals for all observed points were calculated on the 
logit (ln(p/1 - p)) scale of the model. A kriged map of 
deviance residuals was then calculated which was added 
to the predicted values on the logit scale. Spatial 
dependence, displayed by these plots was analyzed 
using the semivariogram. The addition of kriged residuals 
allowed the maps to deviate from the model and move 
closer to the original sampled, canopy-related, predictor, 
covariate, coefficient, indicator, measurement values. 
These smoothed values improved the final maps of the 
forecasted S. damnosum s.l. habitats and its associated 
canopy cover, Precambrian rock and rippled water 
components sampled. An exponential model was then 
fitted to the semivariogram, using a range of 72.6 m, a 
nugget of 0.21 (variance), a lag size of 11.5 m with 12 
lags and a partial sill of 0.24 (variance) (Figure 8). 
Thereafter, a predictive S. damnosum s.l. habitat canopy-
based map was generated for a neighbouring riverine 
study site (Figure 9). The forecasted S. damnosum s.l. 
habitats were then field-verified which revealed a 100% 
correlation with the  predicted  estimates.  We  then  used  
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Figure 9. (A) KrigedS. damnosum s.l. habitat pixel spectral reflectance estimates with predicted using a 
QuickBird endmember reference signature, (B) Predicted S. damnosum s. l. habitats in a neighbouring 
riverine ecosystem at the S. damnosum s. l. riverine epidemiological study site. 

 
 
 
the ARIMA procedure outlined by Box and Jenkins for 
quantifying the nonlinear least squares iterations. Given 
our  time-series dependent data where  was an integer 

index and   was the sampled immature S. damnosum 
s.l.   data,  then  an  ARMA (p,q) model  was  constructed 

based on  (9) where  was 
the lag operator, the  were the parameters of the 

autoregressive part of the model, the  was the 
parameters of the moving average part and  the    were 



 
 
 
 
error terms. The error terms [that is, ] were generally 
assumed to be i.d.d variables sampled from a normal 
distribution with zero mean. Assuming now that the 

polynomial  has a unitary root of multiplicity 
d., we rewrote equation 9 as  

The ARIMA 
(p,d,q) process expressed this polynomial factorization 
property, which was then rendered by: 

 . Our model 
output resembled a particular case of an ARMA (p+d,q) 
process having the auto-regressive polynomial with some 
roots in the unity.  

In terms of estimation methods, METHOD = ML option 
in PROC ARIMA which produced MLEs. The MLEs were 
computed by letting the univariate ARMA models be 

 where  was an independent 
sequence of normally distributed innovations with mean 0 
and variance . Here  was the mean parameter  plus 
the transfer function inputs. The log-likelihood function 
was then written as follows: 

. In this equation, n 
was the number of georeferenced S. damnosum s. l. 
spatiotemporal-sampled, riverine, spectral, larval, habitat 
observations,  was the variance of x as a function of 
the  and  parameters, and  denoted the 
determinant. The vector x was the time series minus 
the structural part of the model , written as a column 
vector, as follows: 
 

   
 

The MLE of  in the endemic, transmission-oriented, 
Euclidean, distance-based, transmission-oriented models 
was then computed as: 
 

  
 
Note that the default estimator of the variance was 
divided by , where r was the number of estimators in 
the  model, instead of by n. Specifying the NODF option 
caused a divisor of n to be used.  The log-likelihood with 
respect to  was then optimized using additive 
constants which then 

rendered in the model 
residuals. We let  H  be the  lower  triangular  matrix  with 
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positive elements on the diagonal such that .  
We also let e be the vector  in the model.  The 
concentrated log-likelihood with respect to was then 

written as  and 

. The MLEs were then produced 
by using the LMA to minimize the following sum of 

squares:  in the models. The subsequent 
analysis of the residuals was done by using e as the 
vector of residuals.  

Thereafter the METHOD=CLS option produced robust 
conditional least squares (CLS) estimates. The series  
was represented in terms of the seasonal-sampled S. 
damnosum s.l. riverine larval habitat observations, as 
follows: 
 

  
 
The  weights were computed from the ratio of the  and 

 polynomials, as follows:  
 

 
 
The CLS method produced estimates minimizing: 
 

  
 
Whereby  was computed from the estimates of  and  
at each iteration. For attaining robust METHOD=ULS and 
METHOD=ML, initial estimates were computed using the 
METHOD=CLS algorithm. The arthropod-related, 
infectious disease, transmission–oriented, risk-model, 
residual estimates were then obtained by applying least 
squares MLE to the noise series. Thus, for transfer 
function models, the MLE option did not generate the full 
multivariate ARMA MLEs employing only the univariate 
likelihood function which in this research was applied to 
the noise series.  

Because PROC ARIMA in SAS/GIS employed all of the  
available data for the input series to generate the noise 
series, other start-up options for the transferred series 
was implemented by prefixing the seasonal-sampled, S. 
damnsoum s.l., riverine, larval, habitat observations as 
non-interpolated covariate coefficients. For example, we 
fit a transfer function model to the sampled, 
onchocerciasis, transmission-oriented, variable Y with the 
single input X. Thereafter, we employed a start-up using 
0 for the seasonal sampled values by prefixing  the 
coefficients to the actual data using an observation with a 
missing value for Y and a value of 0 for X. PROC ARIMA 
was   then  computed  which   generated  the  information 
criteria, (AIC). The AIC can be used to compare competing  
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models fit to the same series (Cressie, 1993). The AIC rendered  
for each Euclidean, distance-based ArcGIS, endemic, delineated, transmission-oriented zone. Thereafter, the model 
order depicted the pattern associated with an ARMA series.  

In this research, the chi-square statistics employed in the test for lack of fit were computed using the Ljung-Box 
formula: 

 

  where and  were the residual series.  
 
 
The Ljung–Box test is a type of statistical test of whether 
any of a group of autocorrelations of a series are different 
from zero (Griffith, 2003). Therefore, in this research 
instead of just testing randomness at each distinct lag, 
we also determined the "overall" randomness based on a 
number of lags (that is, a portmanteau test). A 
portmanteau test is a type of statistical hypothesis test in 
which the null hypothesis is well specified, but the 
alternative hypothesis is more loosely specified whereby 
tests constructed in this context can have the property of 
being at least moderately powerful against a wide range 
of departures from the null hypothesis (Cressie, 1993).   

The extended, sample, autocorrelation, function 
method tentatively identified the orders of non-stationary 
ARMA process based on iterated least squares estimates 
of the autoregressive parameter estimators at each 
ArcGIS classified transmission zone at the study site. 
Given a stationary or non-stationary time series 

 with mean corrected form  
with a true autoregressive order of , a true moving-
average order of  was estimated using  the unknown 
orders  and  by analyzing the autocorrelation 
functions associated with filtered series of the form: 
 

  
 
In this series  represented the backshift operator, where 

 were the autoregressive test orders, 
where  represented the moving-

average test orders, and where  were the optimized 
autoregressive parameter estimates under the 
assumption that the series was an ARMA ( ) process.  
For purely predictive, autoregressive models ( ), 

OLS is used to consistently estimate  (Cressie, 
1993). 

In this research, consistent estimates from the ARMA 
models were obtained also by the iterated least squares  
recursion formula, which was initiated by the pure 
autoregressive estimates: 

 

  

The th lag of the sample autocorrelation function of the 

filtered series  then extended the sample 
autocorrelation function, which in this research was 

denoted as  for each onchocerciasis, 
endemic transmission-oriented, risk-based, transmission 
zone. The standard errors of  were then computed in 
the usual way by using Bartlett’s approximation of the 
variance based on the sample autocorrelation function: 
 

 
 
The Barletts approximation calculates standard error with 
an approximation that was appropriate when the series 
represents a moving average process of order k-1 
(Hosmer et al., 2000). With this method, standard errors 
grew with increasing lags in the endemic, spatially, 
autoregressive model residuals. If the true model is an 

ARMA ( ) process, the filtered series  follows 

an MA ( ) model for  so that  and 

 (Tsay and Tiao, 1984). In this 
research, we showed that the extended sample 
autocorrelation from endemic, transmission-oriented, 
risk–based, epidemiological model satisfied 

 and 

 
when  was a non-zero constant or a 
continuous random variable bounded by –1 and 1.  

An extended sample autocorrelation function (ESACF) 
table was then constructed by for  
and  to identify the ARMA 
orders. The orders were tentatively identified by finding a 
right (that is, maximal) triangular pattern with vertices 
located at  and  in which all 
elements were insignificant based on asymptotic 
normality of the autocorrelation function. The vertex 

 thereafter identified the order associated with 
an ARMA (1,2) series.  

The smallest canonical (SCAN) correlation method was 
then tentatively used to identify the orders of a stationary 
or non-stationary ARMA process in the endemic 
transmission-oriented model. We used simulation to 
study the efficacy of the modification for applying test 
statistics to  analyze  daily  logSCAN  for  robust  ARIMA  



 
 
 
 
model selection in SAS/GIS. LogSCAN data can be 
applied to either non-transformed or differenced series 
(Tsay and Tiao, 1985). We then used the time series 

 with mean corrected form  
with a true autoregressive order of  employing a true 
moving-average order of . We used  the  SCAN  method  
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to analyze eigenvalues of the correlation matrix of the 
ARMA process. Thus, for autoregressive test order 

 and for moving-average test order we 
had : . We then let 

. Then we computed the 
 matrix 

 

= =   
 
 
Where  ranged from  to . We found the 

smallest eigenvalue was , of  and its 
corresponding normalized eigenvector, 

 in the model. 

The squared canonical correlation estimate was . 
Using the  as AR( ) coefficients, we obtained  the 
residuals for  to , by using the formula: 
 

 
From the sample autocorrelations of the residuals, 

, we approximated the standard error of the squared 
canonical correlation estimates using 

 which rendered 

.  The test statistic we 
employed was an identification criterion which was 

. This 

expression was asymptotically if  and  
or if  and  in the transmission-oriented, 
epidemiological, risk model. We noticed that in the 
residual for and , there was more than one 
theoretical zero canonical correlation between  and 

. Since the  were the smallest canonical 
correlations for each , the percentiles of  were  

less than those of a ; A SCAN table was then 
constructed using  to determine which of the 

 were significantly different from zero. The ARMA 
orders were then tentatively identified for the model by 

finding a pattern in which the  were insignificant 
for all test orders  and  which was then 
depicted in SAS/GIS l (Figure 9). 
 
 
DISCUSSION 
 
In this research we robustly quantitated the seasonal-
sampled georeferenced endemic risk-based explanatory 
predictor covariate coefficients and their uncertainty 
indicators   (for   example,   latent    autocorrelated    error 

coefficients) within an spatially dependent geographically 
weighted matrix in PROC ARIMA. By so doing, we 
attained fine-tuned unbiased versions of random-walk 
and random-trend model specifications. In our pre-
whitening approach the autocovariate parameter error 
estimators were estimated and removed from the data 
and the model, and the GLM was re-fitted. We employed 
the pre-whitening method of Cochrane and Orcutt (1949) 
which in this research was performed in SAS/GIS 
assuming that the errors generated from the estimated 
predictive residual variance followed a first-order 
autoregressive process. Pre-whitening is a 
preconditioning technique for the correlation analysis 
method (Cressie, 1993).  

In this research our pre-whitening involved applying a 
filter to the input signal u(k) and the output signal y(k) to 
obtain a pre-whitened input signal u'(k) and a pre-
whitened output signal y'(k). After calculation of a GLM, 
the amount of serial correlation was successfully 
estimated using pairs of successive residual estimated 
values (for example, ET, ET+1). In our model the filter 
was well designed such that u'(k) represented the white 
noise. By so doing, we also were able to successfully 
perform a correlation analysis on u'(k) and y'(k) to 
estimate the impulse response. The impulse response we 
estimated for the onchocerciasis, endemic, transmission-
oriented risk model with u'(k) and y'(k) was equivalent to 
the impulse response estimate when the following 
equation remained true: 
 

 
 
Therefore, in our predictive, autoregressive, 
spatiotemporal, arthropod-related risk model, u'(k) was 
white noise. We then selected "ARIMA" as the model 
type to evaluate the order of non-seasonal differencing, 
and to set all the AR and MA terms to zero. We noticed 
that the seasonal change-related, parameter estimators 
in our model had stationary noise, suggesting that the 
mean (that is, constant) forecasting estimator had to be 
applied to accurately quantitate seasonal differences in 
the   onchocerciasis–related,     spatiotemporal-sampled,  
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Figure 10. ARIMA predicted S. damnosum s.l.-related data feature attributes in riverine epidemiological study 
site. 

 
 
 
epidemiological data. The ARIMA specifications then 
quantified geographically varying lags in the endemic 
risk-based distribution model employing the Euclidean-
based distance measurements. The output revealed that 
the spatial data attribute features were positively spatially 
auto-correlated with each 5 km stratified geolocation. 

Interestingly, the "mean" and the "constant" in risk-
based distribution ARIMA model-fitting results were 
different numbers whenever the model included AR 
terms. Thus, in the future when fitting the ARIMA model 
to Y in which p is the number of autoregressive terms in 
an endemic, transmission-oriented, risk-based, 
onchocerciasis-related, distribution model, y can be used 
to denote the difference (that is, stationarized) version of 
Y- [for example, y(t) = Y(t)-Y(t-1)]. By so doing, only one 
non-seasonal difference would be required. Thereafter, 
the AR (p) forecasting equation for y in the model would 
be: 

 

 

Statistically speaking this equation would then be an 
ordinary multiple regression model where "mu" is the 
constant term, "phi-1" is the coefficient of the first lag of y, 
and so on. Thereafter, an infectious disease researcher 
or local program manager may be able to convert this 
slope-intercept form employing a predictive regression 
equation whose equivalent form represents in terms of 
deviations from the mean. Thus, by letting m denote the 
mean of the stationarized series y, a p-order 
autoregressive equation may be written in terms of 
deviations from the mean in their endemic transmission-
oriented risk-based endmember, distribution model using 
the equation: 
 

  
 
Collecting all the constant terms in this equation would 
then allow identifying values rendered that are equivalent 
to the "mu" within a robust, onchocerciasis, endemic, 
transmission-oriented, predictive, regression-based, risk- 
based equation if: 



 
 
 
 

 
 
In this research we actually estimated "m" along with the 
other endemic, transmission-oriented, risk-based, 
distribution model p estimators and reported this as the 
mean in the model-fitting results, along with its standard 
error and t-statistic. Thereafter, a constant (that is, "mu") 
was calculated according to the preceding formula [that 
is, constant = mean *(1 - sum of AR coefficients]. If an 
ARIMA model does not contain any AR terms, the MEAN 
and the CONSTANT are identical (Cressie, 1993).       
  Thereafter, in our model the estimated predictive resi-
dual variance had one order of non-seasonal differencing 
only which was the mean trend factor (for example, 
average period-to-period change). Our final predictive, 
robust, spatiotemporal, autoregressive, arthropod-related, 
risk-based, epidemiological, distribution model had one 
order of seasonal differencing only and the mean was the 
annual trend factor (for example, average year-to-year 
change). 

To accurately spatially forecast the appropriate dataset 
of spatiotemporal, onchocerciasis, endemic, 
transmission-oriented, risk-based ARIMA distribution 
model residuals, thereafter we employed lengthy, time-
series, dependent, S. damnosum s.l., georeferenced, 
feature attributes to identify and predict, endemic, trans-
mission zones at the riverine study site. We identified the 
order(s) of differencing needed to stationarize the 
sampled data series. We then removed the gross fea-
tures of seasonality from the sampled data. Differencing 
is an excellent way of transforming a non-stationary 
series to a stationary one (Cressie, 1993). In this 
research this differencing was facilitated in conjunction 
with a variance-stabilizing transformation which we con-
structed by deflating the seasonal-sampled, time series-
dependent, observational, explanatory, predictorsin 
ArcGIS geospatial analyst.  

In applied statistics, a variance-stabilizing 
transformation is a data transformation that is specifically 
chosen either to simplify considerations in graphical 
exploratory data analysis or to allow the application of 
simple regression-based or analysis of variance tech-
niques (Everitt, 2002). The aim behind the choice of our 
variance-stabilizing transformation was to find a simple 
function ƒ to apply to the sampled, endemic, 
onchocerciasis, transmission-oriented, covariate 
coefficient  (that is, x)  in the empirical, ecological, 
spatiotemporal-sampled, dataset to create new sampled 
values y = ƒ(x) such that the variability of the sampled 
values y was not related to their mean value. We knew 
the explanatory, covariate, coefficient values x in our risk-
based model data realizations from the different 
calculated Poisson distributions we generated had 
different mean values (that is, μ). Further, we noticed that 
the variance in our model varied with the mean. 
Commonly, the Poisson distribution has a variance that is  
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identical to the mean (Haight, 1967). Fortunately a simple 

variance-stabilizing transformation where  
linearly rectified the sampling variance associated with 
the spatiotemporal-sampled, observational, predictor, 
explanatory estimates. The estimates were nearly 
constant. Our methods were similar to that of the  
Anscombe transform which proposed a form of the 

square root transform aimed at 
stabilizing the variance of the Poisson distribution to a 
value of approximately 1 with the transformed distribution 
being approximately normal especially for larger model 
mean values (for example, m>20) (Anscombe, 1948). 

In our riverine-based, predictive, autoregressive, 
epidemiological, risk models we assumed a mean value 
of zero for forecasting the hyperendemic risk regions at 
the riverine epidemiological study site. Our auto-
regressive, ARIMA, transmission-oriented, risk-based, 
time-series matrix contained monthly sampled feature 
attributes (for example, field-sampled larval habitat 
observational predictors), whose seasonal period was 12. 
The first difference of the seasonal difference at period t 
was then (Y(t) - Y(t-12)) - (Y(t-1) - Y(t-13). Applying the 
zero-mean forecasting model to this series yielded the 
equation: (Y(t) - Y(t-12)) - (Y(t-1) - Y(t-13)) = 0. 
Rearranging terms to put Y(t) by itself on the left, the 
equation then was Y(t) = Y(t-1) + Y(t-12) - Y(t-13) (10). 
For example,  our  spatiotemporal, onchocerciasis, 
endemic, transmission-oriented, risk-based data set we 
used September, 1987 to predict a seasonal, 
hyperendemic, S. damnosum s.l., riverine–related, 
geolocational, transmission-oriented, explanatory 
predictor value of Y in October, 1987 by simply  
computing Y(Oct'1987) = Y(Sep'1987) + (Y(Oct’1986) - 
Y(Sep'1986) (11). In other words, October's 
hyperendemic transmission forecasts were equal to 
September's value plus the September-to-October 
regressed explanatory, observed, predictor, covariate, 
coefficient, indicator values from the previous sampled 
year in our model. Equivalently, equation 11 was 
rewritten as: Y(Oct'1987 = Y(Oct'1986) + (Y(Sep'1987) - 
Y(Sep'1986), therefore, the October's forecasts was 
equal to last October's sampled value plus the year-to-
year change observed from the previous month. The 
preceding two equations then were mathematically 
identical; in actuality they were just rearranged terms on 
the right-hand-side.  

Thereafter, a correlagram plotted the autocorrelation 
values in SAS/GIS for the time series at different lags 
(that is, "autocorrelation function").   The seasonal trend 
differences observed in a particular sampling period was 
the same or just a random step away from the trend that 
was observed from the previous sampling period in our 
model. Our ArcGIS-related forecasting risk model 
however revealed erroneous seasonal random trend 
model specifications. Even the most spatially accurate 
random walk or  randomized,  trend,  seasonal,  endemic,  
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Euclidean, distance-based, epidemiological model may 
contain undetected error residuals (for example, 
correlated disturbances) (Cressie, 1993). As such, we 
constructed a simple exponential smoothing model with a 
weighted moving average of past values to determine a 
predictive, regression-based, time series equation which 
was described as: 
 

  
where e (t-1) denoted the error at period t-1. The 
coefficient of the lagged forecast error was then written 
with a negative sign for reasons of mathematical 
symmetry while "Theta" in the predictive equation 
corresponded to the quantity "1-minus-alpha" in the 
exponential smoothing formulas. Note, our model 
resembled the predictive regressive-based equation for 
the ARIMA (1,1,0) model, except that instead of a 
multiple of the lagged difference the model included a 
multiple based on the lagged forecast error. Some non-
stationary, time-series, dependent, non-seasonal, data 
feature attributes exhibit noisy fluctuations around a 
slowly-varying mean (Cressie, 1993). In other words, 
taking the most recent onchocerciasis–related, 
observation as the forecast of the next observation was 
better than using an average of the sampled 
observational predictors in order to filter out the noise for 
estimating a localized mean. Then theLjung–Box 
analyses tested whether any of a group of 
autocorrelations rendered from our time-series 
dependent data were different from zero. In this research 
the "portmanteau" test of Ljung-Box assessed the null 
hypothesis that a series of residuals exhibited no 
autocorrelation for a fixed number of lags L, against the 
alternative that some autocorrelation coefficient ρ (k), 
k = 1, ..., L was nonzero.  
 
The test statistic was: 
 

   
where T was the sample size, L was the number of 
autocorrelation lags, and ρ (k) was the sample 
autocorrelation at lag k. Under the null, the asymptotic 
distribution of Q was the chi-square with L degrees of 
freedom. Instead of testing randomness at each distinct 
lag, our model effectively tested the overall randomness 
within a QuickBird-classified, Euclidean, distant-based, 
zone at the riverine study site based on a number of lags 
(that is, a portmanteau test). Values that equaled to 1 
indicated rejection of the null of no autocorrelation in 
favor of the alternative. The qualitative observations from 
the eigen decomposition algorithm were then confirmed 
by the seasonal, random-walk, trend, model, dataset of 
residuals which revealed that seasonal hyeprendemic, 
stratified, epidemiological, prevalence rates and the 
ArcGIS   derived  Euclidean  distance-based,  algorithmic  

 
 
 
 
measurements were based on the 0 to 5 km transmission 
zone. 

Thereafter, by letting y denote the differenced (that is, 
stationarized) version of Y in the autoregressive 
regression-based equation y(t) = Y(t)-Y(t-1), non-
seasonal, differential variables  were employed for 
targeting aggregations of prolific habitat locations (that is, 
hypernendemic area) based on spatiotemporal, field-
sampled, count data. The AR(p) forecasting regression 
based, equation for y was 

. This was 
just an ordinary multiple, regression, risk model in which 
"mu" was the constant term, "phi-1" which was the 
coefficient of the first lag of y, and so on.  Now, internally, 
the software (SAS/GIS) converted this slope-intercept 
form of the spatiotemporal, autoregressive, 
onchocerciasis, endemic, transmission-oriented, risk–
based, predictive, regression equation to an equivalent 
form in terms of the model’s deviations from the mean. 
Thereafter, by letting m denote the mean of the 
stationarized series y in the endemic, transmission-
oriented, regression-based, model residuals, the p-order 
autoregressive, predictive, time series equation  was re-
written in terms of the deviations from the mean as: 
 

By collecting all the constant terms in this equation, the 
residuals were then determined to be equivalent to the 
"mu" form of the equation: 

[  ]  
 
 
Conclusion  
 
ArcGIS determined all distance-based measurements 
from the georeferenced S. damnosum s.l. riverine 
capture point using an Euclidean allocation algorithm. 
The algorithm rendered the direction from each cell to the 
closest georeferenced stratified village source. Poisson 
regression models prioritized the covariates at each 
demarcated ArcGIS-derived transmission zone. A 
spectral unmixing analyses then identified the spectral S. 
damnosum s.l., habitat, canopy, endmember, sub-mixel 
components that encompassed illumination geometrical 
values reflected from the Precambrian rock and ripple 
water at the vertices of the simplex. The final endmember 
model output identified the correct fractional presence of 
each canopy-oriented, endmember, spectral, component, 
emitted from the georeferenced S. damnosum s.l., habitat 
capture point and its associated Precambrian rock and 
rippled water. Thereafter, a kriged smoothed map 
displayed the spatial patterns of all productive S. 
damnosum s.l. habitats based on the endmember 
reference signature. By so doing, we were able to define 
the distance at which 95% of the sill was reached  for  the  



 
 
 
 
asymptotic variogram model. 

Multiple terms were caused by coefficient quantization, 
interpolation and linear-approximation error, respectively. 
The estimates where then analyzed with an eigenvector 
spatial filtering algorithm using a positive-definite 
covariance matrix in SAS/GIS® which removed the spatial 
covariate dependence by partitioning the original 
sampled endemic, transmission-oriented data feature 
attributes and into two synthetic variates: (1) a filter 
variate capturing latent spatial dependency and (2) a 
non-spatial variate that was free of spatial dependence. 
The space-time autocorrelation estimation actually 
involved two specifications: one casting a percentage at a 
sampled, prevalence, stratified, village, geographical 
location as a function of the preceding in situ, 
entomological-related, prevalence value as well as the 
preceding neighboring sampled villages values, a lagged 
specification; and the other casting a percentage at 
location as a function of the preceding in situ value as 
well as the contemporaneous neighboring values. The 
geographic distribution of the sampled explanatory co-
variate coefficients based on the immature S. damnosum 
s. l counts exhibited positive spatial autocorrelation in all 
models tested: like larval counts aggregated in 
geographic space. After modeling the misspecification 
term explicitly, the remaining residuals become white 
noise. This allowed us to calibrate the autoregressive, 
endemic, transmission-oriented, landscape, risk-based 
models with the standard OLS estimation procedure 
which then revealed that the hyperendemic region was 
from 0 (georeferenced capture point) to 5 km from the 
capture point. This research demonstrated that the 
eigenvector spatial filtering approach can be embedded 
into a semi-parametric statistical framework for spatially 
targeting endemic onchocerciasis transmission zones.  
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