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The traffic-related carbon monoxide (CO) pollution in Hillsborough County, Florida, has yet to be 
analyzed with high-resolution satellite data or algorithmic geo-spatiotemporal autocorrelation methods. 
This study aims to detect the association between traffic volume and CO pollution in Hillsborough 
County in 2022. It is hypothesized that daytime outdoor CO pollution positively correlates with traffic 
volume. High-resolution daily Giovanni remote sensing data of 1-degree spatial resolution from NASA 
Goddard Earth Sciences Data and Information Services Center was used to detect CO concentration on 
the roadways with annual average daily traffic (AADT) volumes larger than or equal to 80,000 in 
Hillsborough County. The results of AADT and CO concentrations indicated a clustering tendency. The 
Moran’s Indices (I) of AADT was 0.956, and CO was 0.973. The results revealed a non-homoscedastic 
distribution of both AADT and CO concentrations. The performance of continuous data of CO and AADT 
was assessed by Pearson’s correlation (r) to identify the strength and direction of CO concentration 
and AADT values. The results revealed a significant correlation between AADT and CO concentrations 
in this study with r=-0.119. The results also revealed an inversely proportional relationship; as AADT 
increased, daytime CO concentrations decreased. The clustered AADT and CO concentrations may 
account for biases in the correlation.   
 
Key words: Asthma, annual average daily traffic, carbon monoxide pollution, remote sensing, Hillsborough 
County, Florida. 

 
 
INTRODUCTION 
 
Carbon monoxide (CO) is a harmful outdoor air pollutant 
mainly from burning fossil fuels, including  motor  vehicles 

and machines (National Aeronautics and Space 
Administration [NASA], n.d.; United States Environmental 
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Protection Agency [USEPA], 2022). Although CO is not a 
direct greenhouse gas (GHG), it aggravates the 
greenhouse effect by interacting with methane and 
carbon dioxide (NASA, n.d.; Voiland, 2015). Apart from 
this, CO pollution also poses considerable health risks to 
certain groups of people, including people with asthma, 
preexisting cardiopulmonary diseases, children and older 
adults (United States Consumer Product Safety 
Commission [USCPSC], n.d.; Raub, 1999; Kingsley et al., 
2014; USEPA, 2014; USEPA, 2015; Yu et al., 2015; 
Prunicki et al., 2018; Ierodiakonou et al., 2019; Tang et 
al., 2019). Tang et al. (2019) found that increased 
personal exposure to outdoor CO pollution adversely 
impacts the cardiac autonomic control function of older 
residents in metropolitan areas and has a greater impact 
on cardiovascular health compared to young people. This 
is also because CO compounds in the ambient air can 
cause adverse health effects in humans at almost any 
concentration level (USCPSC, n.d.; Raub, 1999; USEPA, 
2022). CO concentration at a low level may cause acute 
myocardial infarction in patients with heart diseases, and 
a concentration over 70 ppm may result in noticeable 
symptoms even in healthy people (USCPSC, n.d.; Raub, 
1999). CO compounds are harmful to humans due to 
their nature to reduce the ability to carry oxygen in 
hemoglobin and thus increase the incidence of acute 
myocardial infarction in patients with heart diseases 
(Raub, 1999). Moreover, chronic exposure to CO at a low 
level may be more dangerous as it is difficult to predict 
the health effects of low-level CO exposure in individuals 
with ischemic heart disease (Raub, 1999). This indicates 
that chronic CO exposure may increase the risk of 
sudden death from arrhythmia in patients with coronary 
artery disease (Raub, 1999). In addition, CO exposure is 
also associated with increased levels of respiratory 
inflammation and thus results in asthma onset (Kingsley 
et al., 2014; USEPA, 2015; Yu et al., 2015; Prunicki et al., 
2018; Ierodiakonou et al., 2019; USEPA, 2023b). There 
is abundant evidence showing that CO, together with 
other vehicle-related pollutants, is associated with genetic 
mutations that result in asthma in humans, especially in 
children (Yu et al., 2015; Prunicki et al., 2018; 
Ierodiakonou et al., 2019; USEPA, 2023b). Children are 
more vulnerable to air pollution than adults due to their 
underdeveloped respiratory systems and higher exposure 
frequencies from increased activity and breathing rates 
(Kingsley et al., 2014; USEPA, 2015). The smaller 
airways in children’s respiratory systems pose even 
higher risks of exposure to pollutants relative to their size 
compared to adults (Kingsley et al., 2014). In the long 
term, children with developing respiratory systems may 
suffer from decreased lung function throughout their 
lifetime (Kingsley et al., 2014; USEPA, 2015). 
Furthermore, chronic exposure to air pollution may 
negatively impact children's cardiovascular health and 
neurobehavioral function (Kingsley et al., 2014). 
Considering the aforementioned risks, vehicle-induced 
CO pollution should be monitored and controlled.  
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The prevalence of CO pollution exposure in the United 
States is high (Kingsley et al., 2014; USEPA, 2014, 
2023a, b). In 2017, 44% of the total CO emissions in the 
U.S. came from mobile sources, which was the primary 
source of CO emissions produced by humans (USEPA, 
2023a). Additionally, nearly two-thirds of the traffic-
induced emissions were created by vehicles on highways 
(USEPA, 2023a). It has been estimated that about 23 
million (14%) people in the United States are susceptible 
to diseases caused by air pollution, and a quarter of them 
are children (USEPA, 2023b). Moreover, in 2009, more 
than 45 million Americans lived within 92 m of at least a 
highway, a railroad, or an airport (USEPA, 2014). 
Population trends indicate this number is increasing 
(USEPA, 2014). As children spend a large amount of 
time in school each year, often during peak traffic hours, 
they may be exposed to higher levels of traffic-related air 
pollution at school than at home (Kingsley et al., 2014; 
USEPA, 2014). According to the figure from a national 
assessment, from 2005 to 2006, approximately 6.4 
million US children, or over 12% attended schools 
located within 250 m of major roadways, and as a result, 
they were exposed to high levels of traffic pollution 
(Kingsley et al., 2014). The effects of this exposure were 
particularly pronounced among minority and 
underprivileged children, although the extent of the 
impact varied depending on the region (Kingsley et al., 
2014). Therefore, people in the U.S. are exposed to CO 
pollution, with specific populations having a higher risk 
(Kingsley et al., 2014; USEPA, 2014, 2023a, b).  

Influential factors of CO pollution include traffic and 
weather conditions which can significantly affect pollutant 
concentrations (Kamiński et al., 2007; USEPA, 2014; Pan 

et al., 2016; Razavi‐termeh et al., 2019; Hauptman et al., 
2020; Abedian et al., 2021; Le et al., 2021; Njoku et al., 
2022; Wang et al., 2021; Biswal et al., 2023). Traffic 
conditions that usually influence CO concentrations 
include vehicle volume, speed, and distance from 
sources of pollution, and at the same time, these factors 
interact with each other (Kamiński et al., 2007; USEPA, 
2014; Pan et al., 2016; Tarigan et al., 2018; Razavi‐
termeh et al., 2019). Distance to the street contributed 
the most to the model testing association between traffic 

pollution and asthma onset (Razavi‐termeh et al., 2019). 
According to Tarigan et al. (2018), the highest CO 
compounds aggregated at about seven meters from the 
traffic while dissipating to the background level at about 
two kilometers in their study. Moreover, Hauptman et al. 
(2020) found that living near major roadways increases 
respiratory health risks for children and pregnant women. 
Above 100 m away from major drive roads, with every 
100 m increased in distance, children had about 30% 
fewer odds of having asthma onsets (Hauptman et al., 
2020).  

Traffic volume also plays an important role in creating 
CO pollution (USEPA, 2014; Pan et al., 2016; Wen et al., 
2017; Le et al., 2021; Wang et al., 2021). Increased traffic 
volume generally leads to  higher  emissions  (Pan  et al., 
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2016; USEPA, 2014). This can be demonstrated by some 
studies regarding the COVID lockdown. CO emissions 
decreased significantly during the lockdown due to 
reduced traffic intensity (Le et al., 2021; Wang et al., 
2021; Orth and Russell, 2023). Furthermore, the 
concentration of CO emissions climaxes during peak 
hours in the mornings and evenings due to human 
activities, which also indicates the positive correlation 
between traffic volume and CO emission (USEPA, 2014; 
USEPA, 2015; Pan et al., 2016; Tarigan et al., 2018; 
Njoku et al., 2022). On the contrary, as traffic speed 
decreased, CO emissions increased (Pan et al., 2016; 
Abedian et al., 2021). Although pollutants normally can 
be reduced to background levels within 183 m away from 
the sources without considering weather conditions 
(USEPA, 2014), as the number of vehicles per hour 
increases, CO emissions can spread to over 500 m from 
the sources when traffic intensity and wind speed 
increase (Kamiński et al., 2007). The concentration of 
pollutants is also influenced by the type of vehicles (Orth 
and Russell, 2023), the design of roads, surrounding land 
use, and certain events such as congestion and 
acceleration (USEPA, 2014). In addition to traffic 
situations and human activities, weather conditions can 
also alter CO concentration (National Weather Service 
[NWS], n.d.; USEPA, 2014; Pan et al., 2016; Njoku et al., 
2022). The pollutants tend to concentrate downwind on 
the road (USEPA, 2014). As wind speed increases, the 
CO dissipation rate increases (Pan et al., 2016; Njoku et 
al., 2022). According to Njoku et al. (2022), wind speed 
has more influence on CO concentration and dispersal 
than other weather parameters, such as humidity and 
temperature. The variations in CO concentration levels 
usually occur with the variation in weather and traffic 
conditions (Kamiński et al., 2007; USEPA, 2014; Pan et 
al., 2016; Razavi‐termeh et al., 2019; Hauptman et al., 
2020; Abedian et al., 2021; Le et al., 2021; Njoku et al., 
2022; Wang et al., 2021; Biswal et al., 2023).  

Although many studies have researched the 
associations between traffic and CO pollution, some 
issues within these studies might bias the results. In a 
study on about vehicle-related pollution, CO 
concentrations in the field were measured manually at a 
distance of 300, 500 and 600 m south of the identified 
center of the line source, involving factors such as traffic 
volume, wind direction, and speed, solar radiation 
intensity, and the map of Medan, Iran (Tarigan et al., 
2018). Their results showed that the concentration of CO 
emissions peaked at seven meters from the source while 
decreasing to the bottom at two kilometers. However, this 
might be subjected to bias as only CO concentrations at 
the spots to the south of the street were measured 
(Tarigan et al., 2018). Another potential issue is that 
traffic volume and CO were measured on only one day; 
hence, the result could not represent the average level of 
CO emission and traffic conditions for the year. In a study 
conducted by Njoku et al. (2022), the authors built a 
program in ArcGIS Pro software to  test  the  capability  to  

 
 
 
 

forecast traffic-induced CO concentration. A significant 
positive association was found between vehicle emissions 
and CO pollution on the road. Although an empirical 
Bayesian Kriging regression prediction (EBKRP) model 
was applied in this study, CO was measured manually by 
researchers, and the selection of measuring spots was 
not explainable. Moreover, the time periods the authors 
measured during the empirical data collection only 
covered the peak hours and were not continuous. This 
may have created bias (spatial heteroscedasticity, that is, 
uneven variance multicollinearity, non-Gaussian error, 
and other violations of regression assumptions) in the 
results, which may have mis- specified the whole day 
calculated variable. Pan et al. (2016) applied the 
Gaussian dispersion model and puff integration model to 
predict traffic-induced pollution, including CO emissions, 
and their results showed a negative correlation between 
the speed of the vehicle flows and CO concentrations, 
while there existed a positive correlation between traffic 
volume and CO pollution. One of the problems with this 
study was that the authors estimated the CO 
concentrations utilizing a mathematical model that 
involved traffic-related parameters, including traffic speed 
and volume. This may have introduced bias into the 
relationship between the independent and the dependent 
variables when conducting the regression model. In 
particular, Gaussian diffusion models have limited 
applicability for relatively flat and homogeneous surfaces, 
reasonably steady and moderate to strong winds, 
moderately stable and unstable conditions, neutrally 
buoyant or slightly buoyant emissions, and relatively 
short distances from a source. In solving this issue, a 
spatial regression model should be employed to address 
the temporal-spatial features, such as associations in 
traffic volume and CO pollution data (Ali et al., 2021).  

In the context of spatial regression analysis, several 
methods can be used to control for the statistical effects 
of spatial dependencies among estimated CO 
concentrations and traffic-related parameters. The 
maximum likelihood or Bayesian approaches account for 
spatial dependencies in a parametric framework, 
whereas recent spatial filtering approaches focus on 
nonparametrically removing geo-spatiotemporal 
autocorrelation. Spatial autocorrelation is the correlation 
among values of a single variable strictly attributable to 
their relatively close locational positions on a two-
dimensional surface, introducing a deviation from the 
independent after observations assumption of classical 
statistics (Cliff and Ord, 1973; Anselin, 1988; Griffith, 
2003).  

 In this paper, we propose a semiparametric spatial 
filtering approach that allows epidemiologists and other 
research collaborators to deal explicitly with (a) spatially 
lagged autoregressive models and (b) simultaneous 
autoregressive spatial models for quantitating geo-
spatiotemporally dependent aggregation/non-aggregation- 
oriented propensities of CO signatures in high traffic 
volumes regions in  Hillsborough  County,  Florida.  As  in  



 
 
 
 

one non-parametric spatial filtering approach, a specific 
subset of eigenvectors from a transformed spatial link 
matrix is employed to capture dependencies among the 
disturbances of a spatial, regression, CO, and signature-
traffic volume model (Jacob et al., 2013). However, the 
optimal subset in the proposed filtering model is identified 
more intuitively by an objective function that minimizes 
spatial autocorrelation rather than maximizes a model fit. 
The proposed objective function in a spatial 
autocorrelation model leads to a robust and smaller 
subset of selected eigenvectors (Griffith, 2003). Further, 
we assumed the application of the proposed eigenvector 
spatial filtering approach on georeferenced, multiple, 
mapped, high-traffic volume regions in Hillsborough 
County could demonstrate its feasibility, flexibility, and 
simplicity for prioritizing CO concentrated geolocations. 

Vehicular congestion is a major problem in 
Hillsborough County and is managed by real-time control 
of traffic that requires accurate modeling and forecasting 
of traffic volumes. Traffic volume is a time series that has 
complex characteristics such as autocorrelation, trend 
and seasonality (Benjamin, 1986). Several linear and 
non-linear algorithmic modeling methods have been 
proposed to forecast traffic volume to support congestion 
control strategies in the literature (Akhtar and Moridpour, 
2021). However, these methods focus on some 
environmental characteristics and ignore the latent non-
zero autocorrelation in the data. Zero autocorrelation 
delineates geographic chaos (Griffith, 2003). 

The present study attempts to develop non-zero geo-
spatiotemporal autocorrelation models to predict CO 
concentrations at different mid-block sections of urban 
roads. The proportional share of vehicles and average 
traffic speed are considered inputs to the county-level 
prognosticative model. The traffic volume, speed and CO 
concentrations collected at different mid-block sections 
were analyzed. A good correlation was observed 
between average traffic speed, volume and CO 
concentrations. The assumption was that this study 
would show that classified traffic volume and average 
traffic speed in a mid-block could help explain the 
variance in CO levels significantly in a signature 
autocorrelation, forecast, and vulnerability model. In this 
study, both the ArcGIS Pro technique and remote-
sensing data were adopted to minimize the potential 
latent geo-spatiotemporal autocorrelation bias. The 
schools, healthcare centers, and senior centers within a 
one-kilometer buffer from the highways with the most 
traffic volume values were identified by Google Maps and 
depicted by ArcGIS Pro software. The correlation 
between motor vehicle emissions and CO concentration 
levels was analyzed with SAS 9.4 software. 
 
 
METHODS 
 

Study site 
 

Due to its subtropical location, Florida is more prone to be subjected  
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to extreme weather events such as hurricanes and thunderstorms 
than the rest of the states in the U.S. (Florida Department of Health 
[FDOH], 2014; NWS, n.d.b). Located in the middle-west of Florida 
States, U.S., the size of Hillsborough County is about 1,020.3 
square miles (United States Census Bureau [USCB], 2021) (Figure 
1). Approximately 1,459,762 people were living in this county in the 
year 2020. The county median age was estimated as 37.9 years in 
2021, which was younger than the median age in Florida of 42.8 
years (USCB, 2021). At the beginning of 2022, the total number of 
registered vehicles and vessels in Hillsborough County was 
1,359,866 (Florida Department of Highway Safety and Motor 
Vehicles [FLHSMV], 2022). In the year 2022, the average 
temperature was about 23.7°C, and the average precipitation 
reached about 1,268.476 mm in Hillsborough (NOAA National 
Centers for Environmental Information [NOAANCEI], 2023). As one 
of the major cities of Hillsborough County, Tampa had the highest 
average wind speed in March of 7.9 mph from 1983 through 2020 
(Florida Climate Center [FCC], 2020).  
 
 
Statistics processes / Pearson correlation coefficient test 
 
SAS 9.4 Software was employed in conducting all the statistical 
analyses. A one-sample t-test was conducted to detect the 
normality and distribution of the AADT values. Two independent 
sample t-tests were conducted to examine the similarity of the 
lengths and the number of points on each road section between the 
two categories of AADT groups. A linear correlation test was 
applied to determine the Pearson correlation coefficient (PCC) 
values between AADT and CO concentrations. In statistics, the 
PCC is the ratio between the covariance of two variables and the 
product of their standard deviations; thus, it is essentially a 
normalized measurement of the covariance, such that the result 
always has a value of between -1 and 1 (Freedman et al., 2007). In 
this study, AADT values were classified into two groups: The high-
AADT group and the medium-AADT group. The high level of AADT 
was defined as having AADT above 160,000 vehicles per day 
(VPD), and the medium-AADT group was defined as having AADT 
values from 80,000 to below 160,000. Based on this classification, 
two linear correlation tests were conducted between the two groups 
of AADT variables and the corresponding CO concentrations.  
 
 
Identifying essential buildings 
 
First, ArcGIS Pro 2.9 was utilized to generate one-kilometer buffers 
surrounding the driveways with annual average daily traffic (AADT) 
values greater than or equal to 80,000 VPD with the geoprocessing 
tool. Second, Google Maps was employed to search for essential 
buildings located within the buffers on July 7th, 2023. After all the 
locations of the essential buildings were identified, the coordinates 
were also documented and imported into ArcGIS Pro 2.9. A map 
with all buildings with pairwise buffers was subsequently generated.  
 
 
Variables / AADT values and CO concentrations 

 
The independent variable is the AADT values, and the dependent 
variable is the CO concentrations. The AADT approximates the 
number of motor vehicles going through a section of a roadway on 
average over the year 2022 (Datagov, 2022). The values were 
calculated through standardized formulations provided by the 
Federal Highway Administration (Federal Highway Administration 
[FHA], 2018). Using AADT can minimize bias when calculating the 
daily traffic volume (FHA, 2018). The dataset of AADT values in the 
year 2022 was obtained from the Florida Department of 
Transportation on July 5, 2023, from the Florida Department of 
Transportation   governmental   website    (Florida    Department   of  
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Figure 1. Map of Hillsborough County within Florida, USA, made by ArcGIS Pro.  
Source: Authors. 

 
 
 
Transportation [FDOT], 2022). The measuring points on each 
section of the roadway were added manually. First, the minimum 
(min=379.9 m) and maximum (min=10418.3 m) lengths of road 
sections were identified. SAS 9.4 software was used to calculate 
the number of points added to the sections of the roadways. The 
number of capture points was calculated by dividing the length of 
the road section by 300, and the result was rounded down to get 
the number of points in this section. The formula is shown as 
follows:  

 

 
 
The dependent variable was the CO concentration. The daytime 
CO concentration values of 2022 were downloaded on July 9, 2023, 
from NASA Goddard Earth Sciences Data and Information Services 
Center (GES DISC) (Meyer, 2022). The values on the measuring 
points were obtained in terms of high-resolution daily Giovanni 
remote sensing data of 1-degree spatial resolution. The correlation 
between AADT and CO concentrations was examined by PCC (r) 
with SAS 9.4 software. The AADT values were stratified into two 
categories, which were the high-AADT (AADT ≥ 160,000 VPD) and 
medium-AADT (80,000 ≤ AADT < 160,000 VPD) group (Figure 2). 
The correlations between the CO concentrations and the two 
categories of AADT values were analyzed  with  PCC  (r)  with  SAS 

9.4 software.  
 

 
Eigendecomposition 
 

The assumption for spatial independence was tested for the traffic 
volume and CO sampled; the Pearson product-moment correlation 
coefficient (that is, Moran’s I) was employed for observations. 
Moran coefficient is an index of spatial autocorrelation involving the 
computation of cross-products of mean-adjusted values that are 
geographic neighbors (that is, covariations) that ranges from 
roughly (-1, -0.5) 0 to nearly 0 for negative, and nearly 0 to 
approximately 1 for positive, spatial autocorrelation, with an 
expected value of -1/(n-1) for zero spatial autocorrelation, where n 
denotes the number of areal units (Griffith, 2003).  

Moran’s I was employed as a diagnostic tool for quantitating 
model misspecifications, spatial non-homoscedasticity (that is, 
uneven variance), and outliers in the remotely sensed traffic volume 
and CO sampled parameter estimators. Homoscedasticity 
describes a situation in which the error term (that is, the “noise” or 
random disturbance in the relationship between the independent 
variables and the dependent variable) is the same across all values 
of the independent variables (Freedman et al., 2007). The 
frequency dataset was stratified into georeferenced groups of traffic 
volume and CO sampled, with proportions based on their mid-block 
occurrence   abundance  and  distribution.  Likewise,  Moran’s I was  
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Figure 2. Map of measuring spots with AADT variances in Hillsborough County, FL, 2022.  
Source: Authors. 

 
 
 
employed to determine if the dependent variables were clustered or 
randomly distributed within a geographic space in Hillsborough 
County.  

ArcGIS PRO was employed to generate Moran’s I by computing 
the cross mean of Euclidean inter-site distances between stratified 
traffic volume and CO sampled, mid-block measured explanatory, 
discrete integer values that were geographic neighbors. In the first 
step in Moran’s I analysis, “neighboring” polygons (that is, 
contiguous polygons, polygons within a certain Euclidean distance) 
was defined (Cressie, 1993).  The LAGDISTANCE OPTION 
indicated the neighborhood size, which was important in the 
computation of the autocorrelation index for quantitating clustering 
propensities in the sampled variables. It is of note that lag distance 
in this research was dependent on the sampled county-level traffic 
volume and CO sampled, parameterized estimator sample dataset. 
The goal was to create a variogram that invariably provided optimal 
estimates of spatial dependence for the underlying stochastic 
process within the dataset.  

The compute statement allowed the averaging of binary spatial 
weights within the autocorrelation statistical process needed for the 
construction of Moran’s I coefficient (an equivalent of regression 
slope for Moran’s scatter plot). Using the values from 
LAGDISTANCE and MAXLAGS, the traffic volume and CO sampled 
frequency model in ArcGIS Pro without the Novariogram option in 
order to compute the empirical  semivariogram  was  constructed. A 

variogram is often defined as a measure of spatial variability 
(Griffith, 2003). The strategy was that by sampling stratified traffic 
volume and CO sampled capture points close to each other, this 
would produce typically similar outcomes compared to sampling for 
the capture points separated by larger distances in geographic 
space. Here, the variogram distance measured the degree of 
dissimilarity γ(h) between the sampled stratified traffic volume and 
CO sampled data separated by a class of vectors h. If z (xi) and z(xj 
+ h) were pairs of exploratory georeferenced, traffic volume and CO 
observational samples lying within a given class of distance and 
direction, where N(h) was the number of data pairs within an urban 
commercial land cover class. Subsequently, the experimental 
semivariogram was defined in ArcGIS Pro as the average squared 
difference between the components of the sampled, the traffic 
volume and CO sampled, stratified data pairs in geographic space 
employing the following equation:  

 
γh=12Nh∑i=1Nhzx− xi+h2]                                                            (1) 
 
This spatial variability measure is a semivariogram (Cressie, 1993). 
The study interpolated between the sample variogram, traffic 
volume and CO sampled, explanatory, time series, and dependent 
estimators. The variance of the entire dataset was re-defined as the 
sill and the distance at which the model semivariogram met the 
data set variance, which, in this research, we defined as the  range.  
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A robust version of the semivariance was requested with the 
ROBUST option in the COMPUTE statement. ArcGIS Pro rendered 
a plot showing both the classical and the robust empirical 
semivariograms. The plot option to specify different instances of 
plots was featured in the empirical semivariogram. In addition, the 
autocorrelation Moran’s I statistics was generated under the 
assumption of randomization using binary weights. The output from 
the requested autocorrelation predictive, probabilistic, geo-
spatiotemporal analysis included the observed, computed Geary’s c 
coefficients. The finely tabulated expected value and standard 
deviation for each sampled stratified, traffic volume and CO 
sampled, explanatory, covariate the corresponding Z score, and the 
p-value were calculated in the Pr >j Z j column. The low p-values 
suggested non-zero autocorrelation for both statistics types. Note 
that a two-sided p-value was generated, which was based on the 
probability that the observed traffic volume and CO sampled 
frequency coefficients lay farther away from j Z j on either side of 
the coefficient’s expected value, that is, lower than Z or higher than 
Z. The sign of Z for both Moran’s I and Geary’s c coefficients can 
indicate latent positive or negative geo-spatiotemporal 
autocorrelation (Griffith, 2003). The output randomization estimates 
from the stratified traffic volume and CO sampled, autocorrelation, 
and frequency model were then evaluated in a spatial error (SE) 
model. An autoregressive model was employed whereby a 
geosampled, temporally dependent, socioeconomic stratified 
variable, Y, as a function of nearby sampled traffic volume and CO 
sampled, frequency Y values [that is, an autoregressive response 
(AR) or spatial linear (SL) specification] and/or the residuals of Y as 
a function of nearby Y residuals (that is, an AR or SE specification). 
Distance between frequency-sampled, georeferenced stratified 
traffic volume and CO sampled predictors were subsequently 
defined in terms of an n-by-n geographic weights matrix, C, whose 
c ij values were 1 if the sampled i and j were deemed nearby and 0 
otherwise. Adjusting this matrix by dividing each row entry by its 
row sum, with the row sums given by C1, converted this matrix-to-
matrix W. 

All residual estimates from the model were then evaluated in a 
spatial error (SE) model. An autoregressive model was employed 
that used a sampled variable, Y, as a function of nearby sampled Y 
values [that is, an autoregressive response (AR) or spatial linear 
(SL) specification] and/or the residuals of Y as a function of nearby 
Y residuals [that is, an AR or SE specification]. Euclidean distance 
between traffic volume and CO sampled geolocations was defined 
in terms of an n-by-n geographic weights matrix, C, whose c ij values 
were 1 if the traffic volume and CO sampled, locations i and j were 
deemed nearby, and 0 otherwise. Adjusting this matrix by dividing 
each row entry by its row sum, with the row sums given by C1, 
converted this matrix to matrix W (Griffith, 2003). 

 
 
Study design 
 
In this study, the AADT values of Highways in 
Hillsborough County were identified, and the 
corresponding CO concentration values were obtained by 
ArcGIS Pro 2.9 software. Eigendecomposed 
autocorrelation was employed for both AADT and CO 
values to detect the autocorrelation distribution patterns. 
Stratification based on AADT value was applied, that is, 
high-AADT and median-AADT groups. Pearson 
correlation coefficients were detected with SAS software 
between AADT (including different strata of AADT) and 
CO concentration values to analyze the correlation. In 
addition, to provide disease-prevention information to 
susceptible populations, essential buildings  within  the  1  

 
 
 
 
km buffer zones were geolocated in Google Maps and 
ArcGIS Pro 2.9. Possible ethical issues were avoided by 
obtaining open data from the governmental website.  
 
 

RESULTS 
 
The identified essential buildings include 62 educational 
facilities, 42 hospitals, healthcare centers and clinics and 
11 senior centers. Among the educational facilities, there 
are one children’s museum and 61 elementary, middle 
and high schools for children under 18 years of age. The 
map with all essential buildings was created as shown in 
Figure 3. 

In the process of identifying roadways, 50 roadways 
with AADT values equal to or larger than 80,000 VPD 
were included (mean=142550, 95% CI of mean= 
[131455, 153646] VPD, SD=39041 VPD) (Table 1). In 
this study, 13 road sections had high AADT values 
(mean=193615 VPD, 95% CI of mean=[181273, 205958] 
VPD, SD=20425 VPD) (Table 1), and 37 sections had 
medium AADT values (mean=124608 VPD, 95%CI of 
mean=[116023, 133194] VPD, SD=25750 VPD) (Table 
1). The length (mean= 2695.6 m, 95% CI of 
mean=[2046.5, 3344.8], SD=2284.1 m) of each roadway 
was used to determine the number of points when 
measuring CO concentration (Table 1). As for the length 
of sections for high AADT and medium AADT, the mean 
length was 1549.6 m (95%CI of mean=[939.2, 2160.0], 
SD=1010.1 m) for the high AADT and 3098.3 m (95%CI 
of mean=[2273.4, 3923.1], SD=2473.9 m) for medium 
AADT. The total number of points added on each section 
of the roadway was 424, with 363 points (min=1, 
max=34) on sections with AADT values between 80,000 
VPD and 160,000 VPD and 61 points (min=1, max=11) 
on sections with AADT values above 160,000 VPD 
(Table 1) (Figure 2).  

The AADT and CO concentration-related, stratified, r-
determinant values were converted to a z-score. Z-score 
is a numerical measurement that describes a value's 
relationship to the mean of a group of values (Morán, 
1950). The Z-score is measurable in terms of standard 
deviations from the mean. Researchers can employ a Z-
score for investigating epidemiologic, scalable capture 
point, sentinel site, georeferenceable, AADT-related, 
regressively, prognosticatable model outputs along 
congested highways as it can indicate that the 
geosampled, estimator determinant’s score is identical to 
the mean score in summary diagnostic forecasts (e.g., 
geolocations of aggregation/non-aggregation-oriented, 
county-level, hot/cold spots and their respective CO 
satellite synthesized covariates). The formula for 
calculating a z-score in an empirical, epidemiologic, 
scalable, AADT-related, county vulnerability-oriented, 
prognosticative model for optimally, heuristically, 
optimizing, targeting and prioritizing, georeferenceable, 
aggregation/non-aggregation-oriented, stratifiable, 
geosampled,   CO-related,   capture  point,  sentinel  site,  
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Figure 3. Map of identified essential buildings within the one-kilometer buffer of roadways in Hillsborough County, FL, 2023.  
Source: Authors. 

 
 
 

estimator determinants may be z = (x-μ)/σ, where x is the 
raw score, μ is the population mean, and σ is the 
population standard deviation in semiparametric, 
conditional, autoregressive, eigenvector eigen-geospace. 
As the formula reveals, defining the z-score in these 
analytical model estimator determinants may be 
ascertainable by any researcher or collaborator by 
calculating the raw score minus the population mean 
divided by the population standard deviation. 

The autocorrelation results revealed a clustered 
distribution for AADT and CO concentration values. The 
Moran’s I for the AADT was 0.956, with the expected 
index of -0.002, z-score of 22.709, and p-value < 0.001 
(Figure 4). The z-score of 22.709 indicated a less than 
1% likelihood that the clustered pattern of the AADT 
could be due to random chance. As for the CO 
concentrations, Moran’s I was 0.973, with the expected 
index being -0.002, z-score of 23.064, and p-value < 
0.001 (Figure 5). Given the z-score of 23.064, the 
possibility of the clustered pattern of the CO 
concentrations being the result of random chance could 
be less than 1%.  

The   n-by-1     vector      x    =     [x1 ⋯ x n ]
T
   contained 

measurements of a quantitative variable for n spatial 
units and n-by-n spatial weighting matrix W. The 
formulation for Moran's I of spatial autocorrelation used in 
this research was: 
 

 

 

where  with i ≠ j. The values w ij were spatial 
weights stored in the symmetrical matrix W [that is, 
(w ij = w ji )] that had a null diagonal (w ii = 0). In this 
research, the matrix was initially generalized to an 
asymmetrical matrix W. Matrix W can be generalized by a 
non-symmetric matrix W* by using W = (W*+W*

T
)/2 

(Griffith, 2003). Moran's I was rewritten using matrix 
notation:  
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Table 1. Descriptive statistics of samples, one sample t-test results of AADT values, independent samples t-test results of length and number of points of roadways.  
 

Variable n (%) Mean [95% CI
c
] Min Max SD t-statistic df p-value η2 

AADT (VPD
f
)      25.82

d
 49

d
 <.0001

d 
- 

High-AADT
a 

(VPD
f
) 13 (26) 193615 [181273, 205958] 165000 228000 20425     

Medium-AADT
b 

(VPD
f
)
 

37 (74) 124608 [116023, 133194] 80800 158000 25750     

Total (VPD
f
) 50 (100) 142550 [131454, 153645] 80800 228000 39041     

          

Length      -3.14
e 

46.72
e 

0.003
e 

0.17
e 

High-AADT
a
 13 (26) 1549.62 [939.23, 2160.01] 402.63 3466.6 1010.1     

Medium-AADT
b
 37 (74) 3098.29 [2273.44, 3923.14] 379.87 10418 2473.9     

Total 50 (100) 2695.64 [2046.49, 3344.78] 379.87 10418 2284.1     
          

Number of points      -3.11
e 

46.96
e 

0.003
e 

0.17
e 

High-AADT
a
 61 (14.4) 5 [3, 7] 1 11 3     

Medium-AADT
b
 363 (85.6) 10 [7, 13] 1 34 8     

Total 424 (100) 8 [6, 11] 1 34 8     
 
a
AADT ≥ 160,000. 

b
AADT < 160,000 and ≥ 80,000. 

c
Confidence interval. 

d
Result of one sample t-test. 

e
Result of independent samples t-test. 

f
Vehicles per day. 

 
 
 

where H=(I -11
T
/n) was an orthogonal projector 

verifying that H=H
2
 (that is, H was independent). 

Features of matrix W for analyzing traffic volume 
and CO sampled data include that it is a 
stochastic matrix, expressing each observed 
value yi as a function of the average of the 
location i's nearby data, and allows a single 
spatial autoregressive parameter, ρ, to have a 
maximum value of 1. 

Subsequently, a SAR model specification was 
used to describe the autoregressive variance 
uncertainty estimates. A spatial filter (SF) model 
specification was also used to describe both 
Gaussian and Poisson random variables. The 
resulting SAR model specification took on the 
following form: 

 

                                   (2) 

 
where μ was the scalar conditional mean of Y, 
and ε was an n-by-1 error vector whose  elements 

were statistically independent and identically 
distributed (iid) normally random variates. The 
spatial covariance matrix for Equation (1), using 
the sampled traffic volume and CO covariates, 
was E [(Y - μ l)' (Y - μ l)] = Σ = [(I - ρ W')(I - ρ W)]

-

1
σ

2
, where E (●) denoted the calculus of 

expectations, I was the n-by-n identity matrix 
denoting the matrix transpose operation, 
and σ

2
 was the error variance. 

However, we assumed that when a mixture of 
positive and negative spatial autocorrelation is 
present in a traffic volume and CO frequency 
model, a more explicit representation of both 
effects leads to a more accurate interpretation of 
empirical results. Alternately, the excluded traffic 
volume and CO sampled values may be set to 
zero, although if this is done, then the mean and 
variance must be adjusted. In this research, two 
different spatial autoregressive parameters 
appeared in the spatial covariance matrix model 
specification, which for an SAR model specification 

became: 
 

  (3) 
 

where the diagonal matrix of autoregressive 
parameters, <ρ >diag, contained two sampled 
parameters: ρ+ for those traffic volume and CO 
sampled pairs displaying positive spatial 
dependency, and ρ- for those habitat pairs 
displaying negative spatial dependency. For 
example, by letting σ

2
 = 1 and employing a 2-by-2 

regular square tessellation, 
 

 for  the 
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Figure 4. Autocorrelation of AADT values.  
Source: Authors. 

 
 
 

vector , enabled positing a positive relationship 
between the traffic volume and CO sampled covariates y1 
and y2, a negative relationship between covariates y3 and 
y4, and no relationship between covariates y1 and y3 and 
between y2 and y4. This covariance specification yielded:  
 

                (3)  
 
where I+ was a binary 0-1 indicator variable which 
denoted    those     traffic    volume    and    CO   sampled 

determinants displaying positive spatial dependency, 
and I- was a binary 0-1 indicator variable denoting those 
geolocations displaying negative spatial dependency, 
using I+ + I- = 1. Expressing the preceding 2-by-2 
example in terms of Equation (2,3) yielded: 
 

 

If  either  ρ+=0  (and  hence I+=0 and I-=I) or ρ- = 0 (and  

https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-8-216#Equ2
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Figure 5. Autocorrelation of CO values.  
Source: Authors. 

 
 
 
hence I-=0 and I+=I), then Equation 4 is reduced to 
Equation 2. This indicator variables classification was 
made in accordance with the quadrants of the 
corresponding Moran scatterplot generated using the 
sampled traffic volume and CO sampled covariates 
sampled in the Hillsborough study site. 

If positive and negative spatial autocorrelation 
processes counterbalance each other in a mixture, the 
sum of the two spatial autocorrelation parameters--
(ρ+ + ρ.) will be close to 0 (Griffith, 2003). In this research, 
Jacobian estimation was implemented by utilizing the 
differenced indicator traffic volume and CO sampled 
variables (I+ - γ I-), estimating ρ+ and γ with maximum 

likelihood techniques, and setting . The 
Jacobian generalizes the gradient of a scalar-valued 
function of multiple variables, which itself generalizes the 
derivative of a scalar-valued function of a scalar (Griffith, 
2003). A more complex traffic volume and CO sampled 
estimator determinant specification was  then  posited  by 

generalizing these binary indicator variables. We 
used F: R

n
→ R

m
as, a function from Euclidean n-space to 

Euclidean m-space, which was generated using the 
distance between sampled traffic volume and CO 
specified covariates. Such a function was given by m 
covariate (that is, component functions), y1(x1, xn), 
y m (x1, xn). The partial derivatives of all these functions 
were organized in an m-by-n matrix, the Jacobian 
matrix J of F, which was as follows: 

 

 

This matrix was denoted by J F (x1,..., x n ) 

and .  The   i th   row   (i =1,..., m)   of  this  



 
 
 
 
matrix was the gradient of the i

th
 component function 

y i :(∇ y i ). In this analysis, p was a sampled traffic volume 
and CO specified covariates in R

n 
and F (that is, sampled 

larval/pupal count) that were differentiable at p; its 
derivative was given by J F (p). The model described 
by J F (p)) was the best linear approximation of F near the 
point p, in the sense that: 

 

        (4) 

 
The spatial structuring was achieved by constructing a 
linear combination of a subset of the eigenvectors of a 
modified geographic weights matrix, using (I-11'/n) C (I-
11'/n) that appeared in the numerator of the Moran's 
coefficient (MC) spatial autocorrelation can be indexed 
with an MC, a product-moment correlation coefficient 
(Griffith, 2003). A subset of eigenvectors was then 
selected with a stepwise regression procedure. Because 
(I - 11'/n) C (I - 11'/n)=E Λ E', where E is an n-by-n matrix 
of eigenvectors and Λ is an n-by-n diagonal matrix of the 
corresponding eigenvalues, the resulting traffic volume 
and CO sampled model specification was given by: 

 

                                                        (5) 

 
where μ the scalar mean of Y, Ek was an n-by-k matrix 
containing the subset of k <<n eigenvectors selected with 
a stepwise regression technique, and β was a k-by-1 
vector of regression coefficients. 

A number of the eigenvectors were extractable from (I - 
11'/n) C (I- 11'/n), which were affiliated with geographic 
patterns of the sampled traffic volume and CO-specified 
covariates in the study site, portraying a negligible degree 
of spatial autocorrelation. Consequently, only k of 
the n eigenvectors was of interest for generating a 
candidate set for a stepwise regression procedure. 
Candidate eigenvector represents a level of spatial 
autocorrelation that can account for the redundant 
information in orthogonal map traffic volume and CO 
sampled pattern. Of note is that because the 2-by-2 
square tessellation rendered a repeated eigenvalue, 

To identify georeferenced spatial clusters of traffic 
volume and CO-sampled geolocations, Thiessen polygon 
surface partitioning was generated in ArcGIS Pro to 
construct geographic neighbor matrices, which were also 
used in the spatial autocorrelation analysis. Entries in the 
matrix were 1 if two sampled traffic volumes and CO 
delineated geolocations shared a common Thiessen 
polygon boundary and 0, otherwise. Next, the linkage 
structure for each surface was edited to remove unlikely 
geographic neighbors to identify pairs of sampled 
variables sharing a common Thiessen polygon boundary. 
Attention was restricted to those map patterns associated 
with at least a minimum level of spatial autocorrelation, 
which, for implementation purposes, as defined by 
|MCj/MCmax| >  0.25,  where  MCj  denoted  the  j th  value  
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and MCmax, the maximum value of MC. This threshold 
value allowed two candidate sets of eigenvectors to be 
considered for substantial positive and substantial 
negative spatial autocorrelation, respectively. These 
statistics indicated that the detected negative spatial 
autocorrelation may be considered to be statistically 
significant based on a randomization perspective. Of note 
is that the ratio of the PRESS (that is, predicted error sum 
of squares) statistic to the sum of squared errors from the 
MC scatterplot trend line was well within two standard 
deviations of the average standard prediction error value 
for a traffic volume and CO sampled region in the 
Hillsborough study site.  

The upper and lower bounds for a spatial matrix 
generated using Moran’s I were given by λmax(n/1

T
W 1) 

and λmin(n/1
T
W 1), where λmax and λmin which were the 

extreme eigenvalues of Ω = HWH. Hence, in this 
research, the eigenvectors of Ω were vectors with unit 
norm maximizing Moran's I. The eigenvalues of this 
matrix were equal to Moran's I coefficients of spatial 
autocorrelation post-multiplied by a constant. 
Eigenvectors associated with high positive (or negative) 
eigenvalues have high positive (or negative) 
autocorrelation (Griffith, 2003). The eigenvectors 
associated with eigenvalues with extremely small 
absolute values correspond to low residual geo-
spatiotemporal autocorrelation, which was not suitable for 
defining spatial structures in the traffic volume and CO 
sampled data. 

The diagonalization of the spatial weighting matrix 
generated from the field and remote-sampled traffic 
volume and CO sampled covariate coefficients consisted 
of finding the normalized vectors u i, stored as columns in 

the matrix U=[u1 ⋯ u n ], satisfying: 
 

 

 
where Λ 

= diag (λ1 ⋯ λ n ),  and  for i

 ≠ j. Note that double centering of Ω implied that the 
eigenvectors u i generated from the e sampled covariates 
were centered and at least one eigenvalue was equal to 
zero. Introducing these eigenvectors in the original 
formulation of Moran's I lead to: 
 

                                           (6) 

 
Considering  the  centered  vector  z = Hx  and  using  the  
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properties of idempotence of H, Equation 6 was 
equivalent to:  

 

       (7) 
 
As the eigenvectors u i and the vector z were centered, 

Equation 7 was rewritten:  
 

          (8) 
 
In this research, r was the number of null eigenvalues of 
Ω (r ≥ 1). These eigenvalues and corresponding 
eigenvectors were removed from Λ and U respectively. 
Equation 8 was then strictly equivalent to: 

 

       (9)  

 
Moreover, it was demonstrated that Moran's I for a given 
eigenvector u i was equal to I(u i ) = (n/1

T
W 1)λ i , so the 

equation was rewritten:  
 

 

 
The term cor

2
 (u i , z) represented the part of the variance 

of z that was explained by u i in the traffic volume and CO, 
estimator, determinant model z = β i u i + e i . This quantity 

was equal to . By definition, the 
eigenvectors u i was orthogonal, and therefore, regression 
coefficients of the linear models z = β i u i + e i were those 
of the multiple regression model 

z = Uβ + ε = β i u i + ⋯ + β n-run-r+ ε. 
The maximum value of I was obtained by all of the 

variations of z, as explained by the eigenvector u1, which 
corresponded to the highest eigenvalue λ1 in the spatial 
autocorrelation error matrix. In this research, cor

2
 (u i , z) 

= 1 (and cor
2
 (u i , z) = 0 for i ≠ 1), and the maximum 

value of I, was deduced for Equation 9, which was equal 
to Imax = λ1(n/1

T
W 1). The minimum value of I in the error 

matrix was obtained as all the variation of z was 
explained by the eigenvector un-r corresponding to the 
lowest eigenvalue λ n-r generated in the traffic volume and 
CO  frequency  model.  This  minimum  value  was  equal  

 
 
 
 

to Imin = λn-r(n/1
T
W 1). If the sampled predictor variable 

was not spatialized, the part of the variance explained by 
each eigenvector was equal, on average, to cor

2
 (u i, z) = 

1/n-1. Because the field and remote-sampled traffic 
volume and CO variables in z were randomly permuted, it 
was assumed that we would obtain this result. The set 
of  n! random permutations revealed 

that . It was easily 

demonstrated that  and it followed 

that . The final model revealed a slight 
tendency for negative spatial autocorrelation in the traffic 
volume and CO sampled data. 

A researcher or experimenter may construct space-
time model AADT specifications based on Moran 
eigenvector space-time filters. Such an experiment can 
include zero/non-zero eigen-autocorrelation, which can 
refer to the correlation between existing CO at a capture 
point and other geosampled data (Cliff and Ord, 1973; 
Anselin, 1988; Griffith, 2003), for example, which can 
characterize data values that are not independent but 
rather are tied together in overlapping subsets within a 
given heavy trafficked highway geographic landscape. 
Such an experiment can summarize the various 
interpretations of autocorrelation with particular emphasis 
on its explanation as a prognosticatable, signature, 
seasonal, AADT map pattern. Eigenizable, latent, 
autocorrelation and AADT-related coefficients may also 
be determinable by employing the Moran Coefficient. 
Eigen-spatial filtering is a statistical method whose goal is 
to obtain enhanced and robust results in spatial data 
analysis by decomposing a spatial variable into the trend, 
a spatially structured random component (that is, a 
spatial stochastic signal), and random noise (Griffith, 
2003). Additionally, an experimenter may also separate 
spatially structured random components from both trend 
and random noise, AADT modeling to sounder statistical 
inference and useful visualization of seasonal, topological 
land cover, and meteorological data. This separation 
procedure can involve eigenfunctions of the matrix 
version of the numerator of the Moran coefficient. Moran 
eigenvector spatial filtering conceptual materials may be 
presented using a computer code for implementing the 
procedure in SAS R or Python. 

One sample t-test was conducted to analyze the AADT 
value distribution, and the result was significant, with a t-
value (df=49) of 25.82 (p-value <.0001) (Table 1). Two 
independent samples t-tests were conducted to compare 
the length and number of points between two groups of 
roadways, which are high-AADT and medium-AADT 
groups. The equality of variances was tested with a F-
value of 6 (p=0.002) (Table 1). There was a significant 
difference in lengths between the road sections with high 
AADT and medium AADT, with a t-value of -3.14 and a p- 

 



 
 
 
 
value=0.003 (Table 1). The magnitude of the difference in 
the means (mean difference=-1548.67 m) was large with 
eta-squared=0.17 (Table 1). As for the difference in the 
number of points, the differences in the number of points 
on one section of the road between high AADT (mean=5, 
95% CI of mean=[3, 7], SD=3) and medium AADT 
(mean=10, 95% CI of mean=[7, 13], SD=8) were 
significant with a t-value of -3.11 (p=0.003) (Table 1). The 
magnitude of the difference in the means (mean 
difference=-5) was large with eta-squared=0.17 (Table 1). 
The equality of variances was tested with an F-value of 
6.21 (p=0.002) (Table 1). 

In this experiment, spatial autocorrelation was defined 
as a particular relationship between the spatial proximity 
among observational AADT units and the numeric 
similarity among sampled CO values; positive spatial 
autocorrelation referred to situations in which the nearer 
the observational units (AADT and CO signatures), the 
more similar their values (and vice versa for its negative 
counterpart). The presence of non-zero spatial 
autocorrelation or dependence in our model meant that a 
certain amount of information was shared among 
neighboring geo-referenced traffic volume locations 
within our intervention site, and this feature violates the 
assumption of independent observations upon which 
many AADT standard statistical treatments are 
predicated. This latent autocovariance revolved around 
the nature and statistical significance of PCCs in the 
AADT model. 

PCC was decomposed into two parts: Direct correlation 
(partial correlation) and indirect correlation (spatial cross-
correlation) (Draper and Smith, 1981). The methodology 
was applied to determine the relationship between AADT 
and CO development so as to illustrate how to model this 
spatial cross-correlation phenomenon. This study is an 
introduction to developing spatial cross-correlation, and 
future geographical spatial analysis might benefit from 
forecast-oriented, AADT/CO signature models and 
vulnerability indexes. 

The CO concentrations were measured by high-
resolution daily Giovanni remote sensing data (Figure 6). 
The relationship between AADT value and CO 
concentrations was investigated by the PCC. Results 
showed a significant association with a p-value of 0.015 
and a PCC (r) value of -0.119, n=424 (Table 2). This 
indicated a small effect of correlation between the two 
variables; when the annual average traffic volume 
increased, the annual average CO concentration 
decreased slightly. The same statistical test was applied 
to detect the relationship between high AADT and CO 
concentration values. There was a medium negative 
correlation between the two variables, r=-0.331, n=61, p-
value=0.009, with higher AADT values indicating lower 
CO concentrations (Table 2). The correlation between 
medium AADT and CO concentration values was 
detected with the same method. The results showed a 
small positive correlation between the  two  variables,  r =   
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0.142, n=363, p-value=0.007, with higher AADT values 
suggesting higher CO concentration (Table 2). 
 
 
DISCUSSION 
 
Initially, we identified 115 essential buildings located 
within one kilometer of distance from the medium- to 
high-traffic volumes in Hillsborough County, including 
elementary schools, middle schools, high schools, 
children’s museums, healthcare service centers, clinics 
and senior centers. These buildings were pointed out as 
their visitor populations tend to be vulnerable to CO 
pollution (Raub, 1999; USEPA, 2015; Tang et al., 2019). 
The method of searching for potential CO pollution spots 
and correlating this to people’s activities could be 
generalized to other geographic locations. We 
determined the one-kilometer buffer zone based on 
previous studies about the dissipation predictions and 
patterns of CO compound (Kamiński et al., 2007; 
USEPA, 2014). We believed that within a one-kilometer 
distance from the highways, the impacts of CO pollution 
could pose great threats to environmentally vulnerable 
populations, including children, senior people and 
patients (Raub, 1999; Tang et al., 2019; USEPA, 2014). 
Identifying buildings essential to the aforementioned 
populations was vital to this study as it provided 
information related to the vulnerability of health. This can 
be helpful in integrating the 10 Essential Public Health 
Services provided in the future in terms of accessing and 
monitoring environmental factors affecting the population 
(Centers for Disease Control and Prevention [CDC], 
2023).  

The Moran’s I for AADT was 0.956 and for CO 
concentration was 0.973. The positive results of 
autocorrelation analyses revealed clustered patterns 
according to Moran’s I, which indicated that the AADT 
and CO concentration values were clustered. One of the 
potential reasons for this is applying average traffic 
frequencies and CO concentration values. Employing 
mean or median values has the propensity to increase 
homogeneities in the parameters while reducing 
variances. In addition, as we selected the high-AADT and 
medium-AADT values as the independent variables, the 
roadways with lower AADT were not analyzed in this 
study. This further reduced heteroscedasticity in the 
AADT variable. In this case, the linear regression model 
may not be able to detect the association between the 
traffic volume and CO concentration values.  

The PCC (r) between the independent and dependent 
variables was generated. The results of PCC for AADT 
and CO concentration was -0.119 (p-value=0.15); PCC r 
was -0.331 and 0.142 for high-AADT stratum and 
median-AADT (p < .05), respectively. The results 
revealed negative correlations between AADT and CO 
concentrations and also between the high-AADT group 
and  corresponding  CO  concentrations,  which   are  not  
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Figure 6. CO concentrations on measuring points on highways with medium and high AADT in Hillsborough County, 
Florida, 2022. 
Source: Authors. 

 
 
 
consistent with the hypothesis. These negative 
correlations can be explained by the clustered 
autocorrelations within AADT and CO concentrations, 
which biased the results of linear correlation. Additionally, 
as is shown in Figure 2, the highways with high AADT 
values tended to cluster in coastal areas, while Figure 6 
illustrated that the CO concentrations were lower around 
the coastal areas. This can be explained by the weather 
and geographic conditions, including wind speed and 
directions,  and   the   coastal   location   of   Hillsborough 

County, which also laid strong influences on the PCC (r). 
The coastal areas tend to have more winds than in-land 
areas as the winds are generated from movements of 
unevenly heated air above the ocean and earth, which is 
the situation in the downtown areas of Hillsborough 
County (United States Energy Information Administration 
[USEIA], 2022). The above factors can explain the biased 
correlation between the high AADT and CO 
concentrations and thus result in the negative association 
between  overall  AADT  and  CO   concentration  values.  
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Table 2. Descriptive statistics and correlations for study variables.  
 

 Variable n M SD 
p-value (r

c
) 

1 2 3 4 5 6 

AADT (VPD
d
) 424 134037 33178 - 

 
- - - - 

CO 424 103.28 0.5 0.015 (-0.119
c
) - - - - - 

High-AADT
a
 (VPD

d
) 61 189090 21586 - - - - - 

 
CO 61 102.93 0.28 - - 0.009 (-0.33

c
) - - - 

Medium-AADT
b
 (VPD

d
) 363 124785 24748 - - - - - 

 
CO 363 103.34 0.51 - - - - 0.007 (0.142

c
) - 

 
a
AADT ≥ 160,000. 

b
AADT < 160,000 and ≥ 80,000. 

c
Pearson Correlation Coefficient (r). 

d
Vehicles per day.  

 
 
 
In the medium-AADT group, the values of AADT 
were positively correlated with CO concentrations, 
as we hypothesized. However, this does not mean 
that only the highways with medium levels of 
AADT are positively associated with CO pollution. 
As the weather conditions, such as wind speed 
and direction, vary among different areas in 
Hillsborough County, the correlations between the 
studied variables are biased by the weather 
conditions in different ways. Because the wind 
speeds tend to be higher along the coastal areas 
(USEIA, 2022), CO pollution decays faster than in 
the inland areas, which accounts for the spatial 
variances in CO concentrations throughout 
Hillsborough County. This indicates that involving 
weather parameters is necessary when analyzing 
the association between traffic conditions and 
related pollution. In addition, as extreme weather 
conditions are more common during Spring and 
Summer in Florida (FDOH, 2014; NWS, n.d.b), 
the winds and precipitations induced by them tend 
to increase the dissipation of CO compounds 
unevenly in terms of temporal variances (Njoku et 
al., 2022; NWS, n.d.a; Pan et al., 2016).  

The independent t-tests comparing the two 
AADT groups revealed significantly different 
means  of  length  and  number of  points  in  high-

AADT and medium-AADT groups. In this study, 
the roadways with high AADT were shorter in 
length and involved fewer measuring points. Also, 
the standard deviation of length and number of 
points of the high-AADT group were smaller than 
those of the medium-AADT group. Therefore, 
heterogeneities in distribution patterns may also 
alter the association between AADT and CO 
concentration values. The aforementioned 
influential elements, including weather conditions, 
geographical factors, and sampling differences, 
altered the spatial-temporal variances and biased 
the results of the correlation between the 
independent and dependent variables in this study. 

To reduce CO concentrations around essential 
buildings, a better building design that promotes 
ventilation in the building can effectively reduce 
exposure to CO pollution when CO compounds 
aggregate inside the building (USEPA, 2015). 
However, during rush hours, windows and doors 
to the outside environment should be closed, 
while using the heating, ventilating, and air 
conditioning (HVAC) system with high minimum 
efficiency reporting value (MERV) rating filters 
should be equipped by all the essential buildings 
(USEPA, 2015). By altering wind direction and 
speed in downwind areas,  planting  full  coverage 

vegetation alongside the traffic roads can 
effectively reduce air pollution (Deshmukh et al., 
2019; USEPA, 2015). Moreover, the vegetation 
buffers should cover from the top of the canopies 
to the ground to provide the best filtration result in 
reducing air pollutants such as CO compounds 
(Deshmukh et al., 2019; USEPA, 2015). 
Additionally, constructing new buildings farther 
than at least 500 feet away from the main traffic 
roads was also recommended to avoid exposure 
to traffic-induced pollution by some state 
governments (USEPA, 2015). In the long term, 
encouraging public transportation can decrease 
the number of private vehicles on the road by 
increasing the efficiency of transportation and thus 
alleviate CO pollution (Department of Ecology 
State of Washington [DESW], n.d.). 

We noticed that there are some potential biases 
and limitations in this study. The first bias might 
be the misclassification bias. This is one of the 
common biases when doing health research 
(Althubaiti, 2016). This study might be subjected 
to this bias because the CO concentration 
measuring points were added manually from 
ArcGIS Pro. Since the process might not be 
precise, the measuring points of CO concentration 
values  might  not  occur on the same coordinates 
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of the traffic volumes. The second bias is the clustered 
independent and dependent variables. As the traffic 
volume and CO concentration values obtained were 
clustered due to the calculation method of their original 
datasets, the correlation coefficient between them might 
be biased due to non-homoscedasticity. Additionally, 
potential effect modifiers that might impact the results in 
this study include wind speed and direction, humidity, 
temperature and precipitations (Guo et al., 2021; Njoku et 
al., 2022; NWS, n.d.a; Pan et al., 2016; USEPA, 2014). 
These parameters, especially wind speed may bias the 
results due to their influences on CO dissipation and 
decay rate (Njoku et al., 2022; NWS, n.d.a; Pan et al., 
2016; USEPA, 2014). Moreover, local road traffic-related 
CO pollution was not analyzed in this study, although this 
can cause severe health problems for the people living 

nearby (Razavi‐termeh et al., 2019).  
In future research efforts, we would like to implement a 

signature spatial-temporal interpolation model stratified 
by land use land cover (LULC) and elevation. The study 
will create a one-kilometer squared vulnerability stratified 
grid. The grid will be stratified by levels of CO 
concentration and traffic volume throughout Orange 
County, LA, US, and Beijing, China. This method has the 
propensity to not only mitigate the bias due to non-
homoscedasticity within interested variables but also 
complete the coverage of traffic volume measurement. 
Also, weather conditions should be included to minimize 
the potential bias caused by meteorological parameters 
in future studies. 
 
 
Conclusion 
 
In conclusion, the study aimed to detect autocorrelation 
distribution patterns and the association of AADT and 
daytime CO in Hillsborough County, FL. In this study, 
eigenfunction eigendecomposition algorithms were 
applied to detect the autocorrelation within the AADT and 
daytime CO concentration variables. The results of 
Moran’s I were positive, indicating clustered patterns and 
propensity of heteroscedasticity existing in both AADT 
and CO concentration variables, largely due to the 
homogenization resulting from the averaging process of 
the original datasets.  PCC was employed to analyze the 
association between AADT and CO concentrations, and 
the results showed a negative correlation between AADT 
and CO concentration values. However, after 
stratification, the medium-AADT stratum was positively 
correlated with CO concentration values. Considering the 
PPC (r) between the high-AADT stratum and 
corresponding CO concentrations was negative, this may 
bias the association between AADT and CO 
concentrations. It is possible that the results of this study 
may have been affected by unadjusted meteorological 
factors. Despite this, the statistical methods of testing 
distribution   patterns    and    the    association   between  

 
 
 
 
variables have been demonstrated in this study with 
optimal outcomes. A signature spatial-temporal 
interpolation model could be established in future 
research to involve climatic parameters to detect geo-
spatiotemporal errors and reveal the correlation between 
traffic activities and air pollution by improving sampling 
techniques and analyzing meteorology modification. 
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