Journal of
Soil Science and Environmental Management

  • Abbreviation: J. Soil Sci. Environ. Manage.
  • Language: English
  • ISSN: 2141-2391
  • DOI: 10.5897/JSSEM
  • Start Year: 2010
  • Published Articles: 311

Full Length Research Paper

The effect of Jatropha curcas L. leaf litter decomposition on soil carbon and nitrogen status and bacterial community structure (Senegal)

Tidiane Dieye
  • Tidiane Dieye
  • Centre de Recherche IRD-ISRA de Bel-Air, UMR 210 Eco&Sols LMI IESOL, Laboratoire d’Ecologie Microbienne des Sols et Agrosystèmes Tropicaux, B.P. 1386 CP 18524 Dakar, Sénégal.
  • Google Scholar
Komi Assigbetse*
  • Komi Assigbetse*
  • Centre de Recherche IRD-ISRA de Bel-Air, UMR 210 Eco&Sols LMI IESOL, Laboratoire d’Ecologie Microbienne des Sols et Agrosystèmes Tropicaux, B.P. 1386 CP 18524 Dakar, Sénégal.
  • Google Scholar
Ibrahima Diedhiou
  • Ibrahima Diedhiou
  • Ecole Nationale Supérieure d’Agriculture, Thiès, Senegal.
  • Google Scholar
Mbacké Sembene
  • Mbacké Sembene
  • Département de Biologie Animale, Université Cheikh Anta Diop Dakar, Senegal.
  • Google Scholar
Amadou Lamine Dieng
  • Amadou Lamine Dieng
  • Centre de Recherche IRD-ISRA de Bel-Air, UMR 210 Eco&Sols LMI IESOL, Laboratoire d’Ecologie Microbienne des Sols et Agrosystèmes Tropicaux, B.P. 1386 CP 18524 Dakar, Sénégal.
  • Google Scholar
Mariama Gueye
  • Mariama Gueye
  • Centre de Recherche IRD-ISRA de Bel-Air, UMR 210 Eco&Sols LMI IESOL, Laboratoire d’Ecologie Microbienne des Sols et Agrosystèmes Tropicaux, B.P. 1386 CP 18524 Dakar, Sénégal.
  • Google Scholar
Dominique Masse
  • Dominique Masse
  • Centre de Recherche IRD-ISRA de Bel-Air, UMR 210 Eco&Sols LMI IESOL, Laboratoire d’Ecologie Microbienne des Sols et Agrosystèmes Tropicaux, B.P. 1386 CP 18524 Dakar, Sénégal.
  • Google Scholar


  •  Received: 08 October 2015
  •  Accepted: 26 November 2015
  •  Published: 31 March 2016

References

Abbasi MK, Tahir MM, Sabir N, Khurshid M (2014). Impact of the addition of different plant residues on carbon–nitrogen content and nitrogen mineralization–immobilization turnover in a soil incubated under laboratory conditions. Solid Earth Discuss 6(2):3051-3074.
Crossref

 

Abugre S, Oti-Boateng C, Yeboah M (2011). Litter fall and decomposition trend of Jatropha curcas L. leaves mulches under two environmental conditions. Agric. Biol. J. N. Am. 2(3):462-470.
Crossref

 

Allison SD (2012). A trait-based approach for modelling microbial litter decomposition. Ecol. Lett.15(9):1058-1070.
Crossref

 

Amougou N, Bertrand I, Machet JM, Recous S (2011). Quality and decomposition in soil of rhizome, root and senescent leaf from Miscanthus giganteus, as affected by harvest date and N fertilization. Plant Soil 338(1):83-97.
Crossref

 

Arriaga L, Maya Y (2007). Spatial variability in decomposition rates in a Desert Scrub of Northwestern Mexico. Plant Ecol. 189(2):213-225.
Crossref

 

Azeez JO, Van Averbeke W (2010). Nitrogen mineralization potential of three animal manures applied on a sandy clay loam soil. Bioresour. Technol.101(14):5645-5651.
Crossref

 

Badejo MA, Tian G, Badejo MA, Tian G (1999). Abundance of soil mites under four agroforestry tree species with contrasting litter quality. Biol. Fertil. Soils 30(1):107-112.
Crossref

 

Banning NC, Grant CD, Jones DL, Murphy DV (2008). Recovery of soil organic matter, organic matter turnover and nitrogen cycling in a post-mining forest rehabilitation chronosequence. Soil Biol. Biochem. 40(8):2021-2031.
Crossref

 

Basiliko N, Henry K, Gupta V, Moore TR, Driscoll BT, Dunfield PF (2013). Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands. Front. Microbiol. 4(215):1-14.
Crossref

 

Bationo A, Buerkert A (2001). Soil organic carbon management for sustainable land use in Sudano-Sahelian West Africa. Nutr. Cycl. Agroecosys. 61(1):131-142.
Crossref

 

Beyaert R, Paul Voroney R (2011). Estimation of decay constants for crop residues measured over 15 years in conventional and reduced tillage systems in a coarse-textured soil in southern Ontario. Can. J. Soil Sci. 91(6):985-995.
Crossref

 

Bray SR, Kitajima K, Mack MC (2012). Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biol. Biochem. 49:30-37.
Crossref

 

Bremner JM (1965). Inorganic forms of nitrogen. In: Method of soil analysis. Am. Soc. Agron. 9:1148-1178.

 

Chapman SK, Newman GS, Hart SC, Schweitzer JA, Koch GW (2013). Leaf litter mixtures alter microbial community development: mechanisms for non-additive effects in litter decomposition PLoS ONE, 8(4):e62671.
Crossref

 

Chaudhary DR, Chikara J, Ghosh A (2014). Carbon and nitrogen mineralization potential of biofuel crop (Jatropha curcas L.) residues in soil. J. Soil Sci. Plant Nutr. 14(1):15-30.
Crossref

 

Cleveland CC, Reed SC, Keller AB, Nemergut DR, O'Neill SP, Ostertag R, Vitousek PM (2013). Litter quality versus soil microbial community controls over decomposition: a quantitative analysis. Oecologia 174(1):283-294.
Crossref

 

De Angelis KM, Chivian D, Fortney JL, Arkin AP, Simmons B, Hazen TC, Silver WL (2013). Changes in microbial dynamics during long-term decomposition in tropical forests. Soil Biol. Biochem. 66:60-68.
Crossref

 

Dieng A, Ndoye I, Duponnois R, Baudoin E (2014). Effects of Jatopha curcas L. plantation on soil bacterial and fungal communities. Soil Biol. Biochem. 72:105-115.
Crossref

 

Dilly O, Bloem J, Vos A, Munch JC (2004). Bacterial diversity in agricultural soils during litter decomposition. Appl. Environ. Microbiol. 70(1):468-474.
Crossref

 

Dossa EL, Khouma M, Diedhiou I, Sene M, Kizito F, Badiane AN, Samba SAN, Dick RP (2009). Carbon, nitrogen and phosphorus mineralization potential of semiarid Sahelian soils amended with native shrub residues. Geoderma 148:251-260.
Crossref

 

Esperschütz J, Zimmermann C, Dümig A, Welzl G, Buegger F, Elmer M, Munch JC, Schloter M (2013). Dynamics of microbial communities during decomposition of litter from pioneering plants in initial soil ecosystems. Biogeosciences 10(7):5115-5124.
Crossref

 

Ge Y, Chen C, Xu Z, Oren R, He JZ (2010). The spatial factor, rather than elevated CO2, controls the soil bacterial community in a temperate forest ecosystem. Appl. Environ. Microbiol. 76(22):7429-7436.
Crossref

 

Goering HK, Van Soest PJ (1970). Forage fiber analyses (Apparatus, Reagents, Procedures and Some Applications). Agric Handb., N°379.

 

Hättenschwiler S, Aeschlimann B, Coûteaux MM, Roy J, Bonal D (2008). High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol. 179:165-175.
Crossref

 

Hayes P, Turner BL, Lambers H, Laliberté E (2014). Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. J. Ecol. 102(2):396-410.
Crossref

 

Heil M (2010). Plastic defence expression in plants. Evol. Ecol. 24(3):555-569.
Crossref

 

Kemp PR, Reynolds JF, Virginia RA, Whitford WG (2003). Decomposition of leaf and root litter of Chihuahuan desert shrubs: effects of three years of summer drought. J. Arid. Environ. 53(1):21-39.
Crossref

 

Kitayama K, Aiba S-I, Takyu M, Majalap N, Wagai R (2004). Soil phosphorus fractionation and phosphorus-use efficiency of a Bornean tropical montane rain forest during soil aging with podozolization. Ecosystems 7(3):259-274.
Crossref

 

Knelman JE, Legg TM, O'Neill SP, Washenberger CL, González A, Cleveland CC, Nemergut DR (2012). Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol. Biochem. 46:172-180.
Crossref

 

Lecerf A, Chauvet E (2008). Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic Appl. Ecol. 9(5):598-605.
Crossref

 

Li LJ, Zeng DH, Yu ZY, Fan ZP, Yang D, Liu YX (2011). Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China. J. Arid Environ. 75(9):787-792.
Crossref

 

Milcu A, Heim A, Ellis RJ, Scheu S, Manning P (2011). Identification of general patterns of nutrient and labile carbon control on soil carbon dynamics across a successional gradient. Ecosystems 14:710-719.
Crossref

 

Murphy J, Riley JP (1962). A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27:31-36.
Crossref

 

Muyzer G, Waal EC, Uitterlinden AG (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59(3):695-700.

 

Ovreås L, Forney L, Daae FL, Torsvik V (1997). Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63:3367-3373.

 

Parmelee RW, Beare MH, Blair JM (1989). Decomposition and nitrogen dynamics of surface weed residues in no-tillage agroecosystems under drought conditions: Influence of resource quality on the decomposer community. Soil Biol. Biochem. 21:97-103.
Crossref

 

Patrício MS, Nunes L, Pereira E (2012). Litterfall and litter decomposition in chestnut high forest stands in northern Portugal. For. Syst. 21(2):259-271.
Crossref

 

Petrakis PV, Spanos K, Feest A, Daskalakou E (2011). Phenols in leaves and bark of Fagus sylvatica as determinants of insect occurrences. Int. J. Mol. Sci. 12:2769-2782.
Crossref

 

Pfeiffer B, Fender A-C, Lasota S, Hertel D, Jungkunst HF, Daniel R (2013). Leaf litter is the main driver for changes in bacterial community structures in the rhizosphere of ash and beech. Appl. Soil Ecol. 72:150-160.
Crossref

 

Ramírez-Valiente JA, Sánchez-Gómez D, Aranda I, Valladares F (2010). Phenotypic plasticity and local adaptation in leaf ecophysiological traits of 13 contrasting cork oak populations under different water availabilities. Tree Physiol. 30:618-627.
Crossref

 

Sall SN, Masse D, Bernhard-Reversat F, Guisse A, Chotte JL (2003). Microbial activities during the early stage of laboratory decomposition of tropical leaf litters: the effect of interactions between litter quality and exogenous inorganic nitrogen. Biol. Fertil. Soils 39:103-111.
Crossref

 

Sinaj S, Buerkert A, El-Hajj G, Bationo A, Traoré H, Frossard E (2001). Effects of fertility management strategies on phosphorus bioavailability in four West African soils. Plant Soil 233:71-83.
Crossref

 

Staelens J, Ameloot N, Almonacid L, Padilla E, Boeckx P, Huygens D, Verheyen K, Oyarzún C, Godoy R (2011). Litterfall, litter decomposition and nitrogen mineralization in old-growth evergreen and secondary deciduous Nothofagus forests in south-central Chile. Rev. Chil. Hist. Nat. 84:125-141.
Crossref

 

Talbot JM, Treseder KK (2012). Interactions among lignin, cellulose, and nitrogen drive litter chemistry–decay relationships. Ecology 93(2):345-354.
Crossref

 

Tanya P, Taeprayoon P, Hadkam Y, Srinives P (2011). Genetic diversity among Jatropha and Jatropha-related species based on ISSR markers. Plant Mol. Biol. Report. 29:252-264.
Crossref

 

Trinsoutrot I, Recous S, Bentz B, Lineres M, Cheneby D, Nicolardot B (2000). Biochemical quality of crop residues and carbon and nitrogen mineralization kinetics under nonlimiting nitrogen conditions.Soil Sci. Soc. Am. J. 64:918-926.
Crossref

 

Tschakert P (2004). The costs of soil carbon sequestration: an economic analysis for small-scale farming systems in Senegal. Agric. Syst. 81:227-253.
Crossref

 

Vauramo S, Setälä H (2011). Decomposition of labile and recalcitrant litter types under different plant communities in urban soils. Urban Ecosyst. 14: 59-70.
Crossref

 

Wani SP, Chander G, Sahrawat KL, Srinivasa Rao C, Raghvendra G, Susanna P, Pavani M (2012). Carbon sequestration and land rehabilitation through Jatropha curcas (L.) plantation in degraded lands. Agric. Ecosyst. Environ. 161:112-120.
Crossref

 

Wardle DA, Bardgett RD, Walker LR, Bonner KI (2009). Among and within-species variation in plant litter decomposition in contrasting long-term chronosequences. Funct. Ecol. 23:442-453.
Crossref

 

Wardle DA, Yeates GW, Barker GM, Bonner KI (2006). The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol. Biochem. 38:1052-1062.
Crossref

 

Wider RK, Lang GE (1982). A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63(6):1636-1642.
Crossref

 

Wright IJ, Westoby M (2003). Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct. Ecol. 17:10-19.
Crossref

 

Zhang D, Hui D, Luo Y, Zhou G (2008). Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J. Plant Ecol. 1(2):85-93.
Crossref

 

Zimmer M, Auge H, Von Wühlisch G, Schueler S, Haase J (2015). Environment rather than genetic background explains intraspecific variation in the protein-precipitating capacity of phenolic compounds in beech litter. Plant Ecol. Divers. 8(1):73-79.
Crossref