Full Length Research Paper
Abstract
Nitrites and morpholine are ubiquitous environmental contaminants found in drinking water and food. NMOR can be formed endogenously from nitrite and morpholine. Increased levels of reactive oxygen species/ reactive nitrite species (ROS/RNS) are involved in the mechanism of NMOR toxicity. Certain antimicrobial, antifungal and antioxidant potential were observed in heterocyclic benzimidazole derivatives and dimethyl sulfoxide (DMSO). This study was designed to evaluate the biological potential of 3-aminothiazolo[3-2a]benzimadzole-2-carbonitrile in the protection of lung and colon tissues against the increased levels of ROS/RNS that are induced by administration of nitrite and morpholine in drinking water for 15 weeks. Forty adult male rats were categorized into 4 groups, 10 rats each. The results showed a significant increase in NO, lipid peroxidation (LPO), total peroxides (TPO), superoxide anion (O2-) and DNA fragmentation in lung and colon tissues of rats treated with nitrite and morpholine compared to the control group. Moreover, histological observation of the lung and colon tissues showed cell necrosis, increase in the leukocyte infiltration and blood vessel congestion. Immunostaining for inducible nitric oxide synthase (iNOS) showed positive reaction for lung and colon tissues. After the co-treatment of rats with DEMSO and 3-aminothiazolo[3-2a]benzimadzole-2-carbonitrile, all the previous biochemical changes were reduced in addition to the relative improvement in the morphological changes of both lung and colon. In conclusion, the injury in lung and colon tissues induced by nitrite and morpholine may return to the increased production of ROS and to the alterations in the levels of antioxidants. Co-treatment of rats with 3-aminothiazolo[3-2a]benzimadzole-2-carbonitrile and DMSO may protect them against nitrite and morpholine toxicity.
Key words: Nitrite, morpholine, nitrosomorpholine (NMOR), inducible nitric oxide synthase (iNOS), benzimidazole derivatives, dimethyl sulfoxide (DMSO), colon, lung, rat.
Copyright © 2024 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0