Journal of
Yeast and Fungal Research

  • Abbreviation: J. Yeast Fungal Res.
  • Language: English
  • ISSN: 2141-2413
  • DOI: 10.5897/JYFR
  • Start Year: 2010
  • Published Articles: 132

Full Length Research Paper

The Lap3p aminopeptidase is not solely responsible for bleomycin resistance in Candida albicans

Alexandra R. Rogers
  • Alexandra R. Rogers
  • Department of Microbiology and Immunology, Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308 USA
  • Google Scholar
Stephanie M. Graves
  • Stephanie M. Graves
  • College of Health Science, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308 USA
  • Google Scholar
Fernando Gonzalez*
  • Fernando Gonzalez*
  • Department of Microbiology and Immunology, Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308 USA
  • Google Scholar


  •  Received: 31 January 2014
  •  Accepted: 02 April 2014
  •  Published: 30 April 2014

References

Antley PP, Hazen KC (1988). Role of yeast cell growth temperature on Candida albicans virulence in mice. Infect. Immun. 56:2884-2890.
Pubmed
 
Beck-Sague C, Banerjee S, Jarvis WR (1993). Infectious diseases and mortality among US nursing home residents. Am. J. Public Health. 83:1739-1742.
Crossref
 
Calderone RA, Fonzi WA (2001). Virulence factors of Candida albicans. Trends Microbiol. 9:327-335.
Crossref
 
Degterev A, Boyce M, Yuan J (2003). A decade of caspases. Oncogene. 22:8543-8567.
Crossref
 
Enenkel C, Wolf DH (1993). BLH1 codes for a yeast thiol aminopeptidase, the equivalent of mammalian bleomycin hydrolase. J. Biol. Chem. 268:7036-7043.
Pubmed
 
Ferrando AA, Velasco G, Campo E, Lopez-Otin C (1996). Cloning and expression analysis of human bleomycin hydrolase, a cysteine proteinase involved in chemotherapy resistance. Cancer Res. 56: 1746-1750.
Pubmed
 
Garcia-Prieto F, Gomez-Raja J, Andaluz E, Calderone R, Larriba G (2010). Role of the homologous recombination genes RAD51 and RAD59 in the resistance of Candida albicans to UV light, radiomimetic and anti-tumor compounds and oxidizing agents. Fungal Genet. Biol. 47:433-445.
Crossref
 
Hube B (2004). From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr. Opin. Microbiol. 7:336-341.
Crossref
 
Ito H, Fukuda Y, Murata K, Kimura A (1983). Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163-168.
Pubmed
 
Jayaguru P, Raghunathan M (2007). Group I intron renders differential susceptibility of Candida albicans to Bleomycin. Mol. Biol. Rep. 34:11-17.
Crossref
 
Joshua-Tor L, Xu HE, Johnston SA, Rees DC (1995). Crystal structure of a conserved protease that binds DNA: the bleomycin hydrolase, Gal6. Science. 269:945-950.
Crossref
 
Kamata Y, Yamamoto M, Kawakami F, Tsuboi R, Takeda A, Ishihara K, Hibino T (2011). Bleomycin hydrolase is regulated biphasically in a differentiation- and cytokine-dependent manner: relevance to atopic dermatitis. J. Biol. Chem. 286:8204-8212.
Crossref
 
Kambouris NG, Burke DJ, Creutz CE (1992). Cloning and characterization of a cysteine proteinase from Saccharomyces cerevisiae. J. Biol. Chem. 267:21570-21576.
Pubmed
 
Kim B, Little JW (1993). LexA and lambda Cl repressors as enzymes: specific cleavage in an intermolecular reaction. Cell. 73:1165-1173.
Crossref
 
Koldamova RP, Lefterov IM, DiSabella MT, Lazo JS (1998). An evolutionarily conserved cysteine protease, human bleomycin hydrolase, binds to the human homologue of ubiquitin-conjugating enzyme 9. Mol. Pharmacol. 54:954-961.
Pubmed
 
Lan CY, Rodarte G, Murillo LA, et al. (2004). Regulatory networks affected by iron availability in Candida albicans. Mol. Microbiol. 53:1451-1469.
Crossref
 
Lazo JS (1999). Bleomycin. Cancer Chemother. Biol. Response Modif. 18:39-45.
Pubmed
 
Lazo JS, Braun ID, Labaree DC, Schisselbauer JC, Meandzija B, Newman RA, Kennedy KA (1989). Characteristics of bleomycin-resistant phenotypes of human cell sublines and circumvention of bleomycin resistance by liblomycin. Cancer Res. 49:185-190.
Pubmed
 
Montoya SE, Aston CE, DeKosky ST, Kamboh MI, Lazo JS, Ferrell RE (1998). Bleomycin hydrolase is associated with risk of sporadic Alzheimer's disease. Nat. Genet. 18:211-212.
Crossref
 
Montoya SE, Thiels E, Card JP, Lazo JS (2007). Astrogliosis and behavioral changes in mice lacking the neutral cysteine protease bleomycin hydrolase. Neuroscience. 146:890-900.
Crossref
 
Muhlschlegal F, Fonzi W, Hoyer L, Payne T, Poulet FM, Clevenger J, Latge JP, Calera J, Beauvais A, Paris S, Monod M, Sturtevant J, Ghannoum M, Nozawa Y, Calderone R (1998). Molecular mechanisms of virulence in fungus-host interactions for Aspergillus fumigatus and Candida albicans. Med. Mycol. 36 Suppl 1:238-248.
Pubmed
 
Pei Z, Calmels TP, Creutz CE, Sebti SM (1995). Yeast cysteine proteinase gene ycp1 induces resistance to bleomycin in mammalian cells. Mol. Pharmacol. 48:676-681.
Pubmed
 
Pfaller MA (1989). Infection control: opportunistic fungal infections--the increasing importance of Candida species. Infect. Control. Hosp. Epidemiol. 10:270-273.
Crossref
 
Schwartz DR, Homanics GE, Hoyt DG, Klein E, Abernethy J, Lazo JS (1999). The neutral cysteine protease bleomycin hydrolase is essential for epidermal integrity and bleomycin resistance. Proc. Natl. Acad. Sci. USA 96:4680-4685.
Crossref
 
Sebti SM, DeLeon JC, Lazo JS (1987). Purification, characterization, and amino acid composition of rabbit pulmonary bleomycin hydrolase. Biochemistry. 26:4213-4219.
Crossref
 
Sebti SM, DeLeon JC, Ma LT, Hecht SM, Lazo JS (1989). Substrate specificity of bleomycin hydrolase. Biochem. Pharmacol. 38:141-147.
Crossref
 
Sebti SM, Lazo JS (1987). Separation of the protective enzyme bleomycin hydrolase from rabbit pulmonary aminopeptidases. Biochemistry. 26:432-437.
Crossref
 
Sebti SM, Mignano JE, Jani JP, Srimatkandada S, Lazo JS (1989). Bleomycin hydrolase: molecular cloning, sequencing, and biochemical studies reveal membership in the cysteine proteinase family. Biochemistry. 28:6544-6548.
Crossref
 
Takeda A, Masuda Y, Yamamoto T, Hirabayashi T, Nakamura Y, Nakaya K (1996). Cloning and analysis of cDNA encoding rat bleomycin hydrolase, a DNA-binding cysteine protease. J. Biochem. 120:353-359.
Crossref
 
Trumbly RJ, Bradley G (1983). Isolation and characterization of aminopeptidase mutants of Saccharomyces cerevisiae. J. Bacteriol. 156:36-48.
Pubmed
 
Wang H, Ramotar D (2002). Cellular resistance to bleomycin in Saccharomyces cerevisiae is not affected by changes in bleomycin hydrolase levels. Biochem. Cell. Biol. 80:789-796.
Crossref
 
Wey SB, Mori M, Pfaller MA, Woolson RF, Wenzel RP (1988). Hospital-acquired candidemia. The attributable mortality and excess length of stay. Arch. Intern. Med. 148:2642-2645.
Crossref
 
Xu HE, Johnston SA (1994). Yeast bleomycin hydrolase is a DNA-binding cysteine protease. Identification, purification, biochemical characterization. J. Biol. Chem. 269:21177-21183.
Pubmed
 
Zheng W, Johnston SA (1998). The nucleic acid binding activity of bleomycin hydrolase is involved in bleomycin detoxification. Mol. Cell. Biol. 18:3580-3585.
Pubmed
 
Zheng W, Johnston SA, Joshua-Tor L (1998). The unusual active site of Gal6/bleomycin hydrolase can act as a carboxypeptidase, aminopeptidase, and peptide ligase. Cell 93:103-109.
Crossref
 
Zheng W, Xu HE, Johnston SA (1997). The cysteine-peptidase bleomycin hydrolase is a member of the galactose regulon in yeast. J. Biol. Chem. 272:30350-30355.
Crossref
 
Zimny J, Sikora M, Guranowski A, Jakubowski H (2006). Protective mechanisms against homocysteine toxicity: the role of bleomycin hydrolase. J. Biol. Chem. 281:22485-22492.
Crossref