Full Length Research Paper
References
Aggarwal N, Bhateja S, Arora G, Yasmin T (2018). Candidiasis- The Most Common Fungal Infection of Oral Cavity. Biomedical Journal of Scientific and Technical Research 8(3):6487-6491. |
|
Asako K, Xianshu L, Yu Osuga, Kawashima A, Dong G, Nasu M, Katayama Y (2013). Bacterial communities in pigmented biofilms formed on the sandstone bas-relief walls of the Bayon Temple, Angkor Thom, Cambodia. Microbes and Environment 28(4):422-431. |
|
Beney L, Marechal P, Gervais P (2001). Coupling effects of osmotic pressure and temperature on the viability of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 56(4):513-516. |
|
Craig EA, Gross CA (1991). Is hsp70 the cellular thermometer? Trends in Biochemical Sciences 16:135-140. |
|
Haruta S, Kanno N (2015). Survivability of microbes in natural environments and their ecological impacts. Microbes and Environment 30(2):123-125. |
|
Ikeda S, Sasaki K, Okubo T, Yamashita A, Terasawa K, Bao Z, Liu D, Watanabe T, Murase J, Asakawa S, Eda S, Mitsui H, Sato T, Minamisawa K (2014). Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions. Microbes and Environment 29(1):50-59. |
|
Jamieson DJ, Rivers SL, Stephen DWS (1994). Analysis of Saccharomyces cerevisiae proteins induced by peroxide and superoxide stress. Microbiology 140(12):3277-3283. |
|
Jamieson DJ (1998). Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14(16):1511-1527. |
|
Krause S, Le Roux X, Niklaus PA, Van Bodegom PM, Lennon JT, Bertilsson S, Grossart HP, Philippot L, Bodelier PL (2014). Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front in Microbiology 27(5):251-258. |
|
Lewis JG, Learmonth RP, Watson K (1995). Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. Microbiology 141(3):687-694. |
|
Mager WH, Varela JC (1993). Osmostress response of the yeast Saccharomyces. Molecular Microbiology 10(2):253-258. |
|
McKenzie CG, Koser U, Lewis LE, Bain JM, Mora-Montes HM, Barker RN, Gow NA, Erwig LP (2010). Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infection and Immunity 78(4):1650-1658. |
|
Moraitis C, Curran BP (2004). Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae. Yeast 21(4):313-323. |
|
Morano KA, Grant CM, Moye-Rowley WS (2011). The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190(4):1157-1195. |
|
Munna MS, Humayun S, Noor R (2015). Influence of heat shock and osmotic stresses on the growth and viability of Saccarromyces cerevisiae SUBSC01 Microbiology. BMC Research Notes 8(1):1-8. |
|
Nur I, Munna MS, Noor R (2014). Study of exogenous oxidative stress response in Escherichia coli, Pseudomonas spp., Bacillus spp., and Salmonella spp. Turkish Journal of Biology 38(4):502-509. |
|
Parsell DA, Kowal AS, Singer MA, Lindquist S (1994). Protein disaggregation mediated by heat-shock protein Hspl04. Nature 372(6505):475-478. |
|
Polymenis M, Kennedy BK (2017). Unbalanced growth, senescence and aging. Advances in Experimental Medicine and Biology 1002:189-208. |
|
Pratt PL, Bryce JH, Stewart GG (2003). The effects of osmotic pressure and ethanol on yeast viability and morphology. Journal of the Institute of Brewing 109(3):218-228. |
|
Rowley A, Johnston GC, Butler B, Werner-Washburne M, Singer RA (1993). Heat shock-mediated cell cycle blockage and G1 cyclin expression in the yeast Saccharomyces cerevisiae. Molecular and Cellular Biology 13(2):1034-1041. |
|
Salvadó Z, Arroyo-López FN, Guillamón JM, Salazar G, Querol A, Barrio E (2011). Temperature Adaptation Markedly Determines Evolution within the Genus Saccharomyces. Applied and Environmental Microbiology 77(7):2292-2302. |
|
Storz G, Hengge R (2011). Bacterial stress responses; Washington: ASM Press. |
|
?wi?ci?o A (2016). Cross-stress resistance in Saccharomyces cerevisiae yeast-new insight into an old phenomenon. Cell Stress and Chaperon 21(2):187-200. |
|
Tai SL, Daran-Lapujade P, Walsh MC, Pronk JT, Daran JM (2007). Acclimation of Saccharomyces cerevisiae to low temperature: a chemostat-based transcriptome analysis. Molecular Biology of the Cell 18(12):5100-5112. |
|
Turkel S (2000). Effects of various physiological stresses on transcription of the SUC2 gene in the yeast Saccharomyces cerevisiae. Turkish Journal of Biology 24(2):233-240. |
|
Walsh RM, Martin PA (1977). Growth of Saccharomyces cerevisiae and Saccharomyces uvarum in a temperature gradient incubator. Journal of the Institute of Brewing 83(3):169-172. |
|
Wuytswinkel Van O, Reiser V, Siderius M, Kelders MC, Ammerer G, Ruis H, Mager WH (2000). Response of Saccharomyces cerevisiae to severe osmotic stress: evidence for a novel activation mechanism of the HOG MAP kinase pathway. Molecular Microbiology 37(2):392-397. |
|
Yamaguchi N, Park J, Kodama M, Ichijo T, Baba T, Nasu M (2014). Changes in the airborne bacterial community in outdoor environments following Asian dust events. Microbes and Environment 29(1):82-88. |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0