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Matching soybean variety selection with its production environment is often challenged by the 
occurrence of significant genotype-by-environment interactions (GEI) in the variety development 
process. Several statistical models have been proposed for increasing the chance of exploiting positive 
GEI and supporting breeding program decisions in variety selection and recommendation for target set 
of environments. Additive main effects and multiplicative interactions (AMMI) and site regression 
(SREG) genotype plus genotype-by-environment interaction (GGE) models are among the models that 
effectively capture the additive (linear) and multiplicative (bilinear) components of GEI and provide 
meaningful interpretation of multi-environment data set in breeding programs. The objective of this 
study was to assess the significance and magnitude of GEI effect on soybean grain yield and exploit 
the positive GEI effect using AMMI and SREG GGE biplot analysis. Grain yield data of 11 genotypes 
evaluated at 4 sites for three cropping seasons (2002, 2003 and 2004) across the soybean production 
ecology in Ethiopia were used for this purpose. AMMI analysis showed that grain yield variation due to 
environments, genotypes and GEI were highly signifiscant (p<0.01). Environments explained the greater 
proportion (61.08%) of total yield variation followed by GEI (34.13%) and genotypes (4.79%), indicating 
the necessity for testing soybean varieties at multi-locations and over years. The first five bilinear AMMI 
model terms were highly significant (p<0.01) and of which the first two terms explained 67.5% of the 
GEI. According to the AMMI and SREG GGE biplots models, no single variety has superior performance 
in all the environments. However, the genotype TGx-1892-10F was overall winner in combining high 
yield with relatively less variable yield across environments. Application of AMMI and GGE biplots 
facilitated visual comparison and identification superior genotypes for each target set of environments. 
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INTRODUCTION 
 
Targeting variety selection onto its growing environments 
is the prime interest of any plant-breeding program. To 
realize this, breeding programs usually  undertake a rigo- 
rous genotypes performance evaluation across locations 
and years mostly at the final stage of variety development 
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process. In such type of multi-environment trials, the 
occurrence of genotype x environment interact-tion (GEI) 
is inevitable (Ceccarelli et al., 2006). GEI refers to 
inconsistent phenotypic performance of genotypes a-
cross environments. When it is associated with a signifi-
cant genotypic rank change over environments, it poten-
tially presents limitations on selection and recommend-
dation of varieties for target set of environments (Navabi 
et al., 2006). This is because in the presence of GEI, 
yield is less predictable and cannot be interpreted based 
on genotype and environmental means alone (Ebdon and 
Gauch, 2002b; Voltas et al., 2002). It is also one of the 
main causes for the failure of formal breeding to serve 
small resource-poor farmers in  marginal  fragile  environ- 



 
 
 
 
ments (Ceccarelli et al., 2006). Both biotic and abiotic 
factors are said to be the main contributors for GEI and 
yield instability in crops. However, these known factors 
not fully but can partly explain most of the GEI in multi-
environment trials (Ferreira et al., 2006).  

Several statistical models have been proposed for 
studying the GEI effect and exploiting its positive part in 
variety development process. The practical utility of 
different statistical models to explain GEI and facilitate 
variety release decision have been extensively reviewed 
and published elsewhere (Becker and Leon, 1988; 
Crossa, 1990; Ferreira et al., 2006; Flores et al., 1998; 
Hussein et al., 2000; Lin et al., 1986; Zobel et al., 1988). 
However, not all of them are always effective enough in 
analyzing the multi-environment data structure in breed-
ing program (Navobi et al., 2006; Zobel et al., 1988). The 
additive main effects and multiplicative interactions 
(AMMI) and site regression (SREG) genotype plus geno-
type x environment interaction (GGE) biplot models are 
defined powerful tools for effective analysis and interpre-
tation of multi-environment data structure in breeding pro-
grams (Ebdon and Gauch, 2002a; Samonte et al., 2005; 
Yan et al., 2000; Zobel et al., 1988). AMMI model 
analysis combines the additive parameters of traditional 
ANOVA (analysis of variance) with multiplicative 
parameters of PCA (principal component analysis). It has 
both linear and bilinear component of GEI and hence 
very useful in visualizing multi-environment data 
(understanding complex GEI and determining which 
genotype won which environment) and gaining accuracy 
(improving cultivar recommendation and accelerating 
progress) (Gauch, 2006). The SREG GGE model is a 
multiplicative model that absorbs the main effects of 
genotypes plus the environment interaction which are the 
two important factors in variety selection (Yan et al., 
2000; Yan and Tinker, 2006). GGE biplots use the 
primary and secondary effects from SREG analysis and 
are useful in maga-environment analysis, test environ-
ments, and genotypes evaluation (Yan et al. 2007). 

The application of these models for explaining GEI and 
analyzing the performance of genotypes and test environ-
ments have been very frequent among plant breeders in 
recent years (Gauch, 2006; Yan et al., 2007). Although the 
soybean breeding in Ethiopia was started with variety trials 
(Asrat et al., 2006), the uses of linear-bilinear models as 
well as the traditional statistical analysis models as a tool 
for analyzing multi-environment trials and interpreting GEI 
have not been very much documented. This  paper   
therefore  attempted  to  apply AMMI  and  SREG  GGE  
biplot  models  to  evaluate  the significance and magni-
tude of GEI effect on soybean grain yield and determine 
the best performing varieties for selection environments. 
 
 
MATERIAL AND METHODS 
 
Eleven genotypes grown in national variety trials during 2002-2004 
cropping season were used for this analysis. The trials were 
executed at four  sites:  Awassa,  Abobo,  Bako  and  Pawe.  These  
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sites represented the major soybean production ecologies of the 
country. The genotypes were TGx-1185-10, TGx-1835-10F, TGx- 
1892-10F, TGx-1895-23F, TGx-1897-17F, TGx-1876-4E, TGx-
1895-4F, TGx-1805-8F and TGx-1895-22F obtained from Interna-
tional Institute for Tropical Agriculture (IITA) as test material, and 
Davis and Cocker-240 as a check. All the genotypes belonged to 
medium maturity group (mean 120 – 150 days for physiological 
maturity). The treatment design was a randomized complete block 
replicated three times at each site per year. The plots were six rows 
of 4 m long with between row and plant spacing of 60 and 5 cm, 
respectively. The central four rows were harvested for grain yield 
measurement. The grain yield was adjusted for 10% seed moisture 
before conversion to kgha-1 for the analysis. 

The grain yield data were subjected to AMMI and SREG model 
analysis in SAS version 9.1 (SAS Institute Inc., 2003) using a SAS 
program written by Hermandez and Crossa (2000). In the analysis, 
each combination between the four locations and three years was 
considered as an environment, making a total of 12 environments. 
The AMMI model used for the data was: 
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and the SREG linear-bilinear model was: 
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Where; ij.y is the mean of the ith genotype in the jth environments; 

�  is the overall mean; i� is the genotypic effect; j� is the 

environment effect; k� ( t�2�1� ≥≥≥ ... ) are scaling 
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orthonormality constraints on the singular vectors for genotypes, 
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effects of genotypes and environments, respectively; ij.� is the 

residual error assumed to be normally and independently 

distributed  (0, r/2� ) (where 
2� is the pooled error variance and 

r is the number of replicates). Least squares estimates of the 
multiplicative  (bilinear)  parameters  in   the   kth  bilinear  term  are 
obtained as the kth component of the deviations from the additive 
(linear) part of the model. In the AMMI model, only the GEI term is 
absorbed in the bilinear terms, whereas in the SREG model, the 
main effects of genotypes (G) plus the GEI are absorbed into the 
bilinear terms.  

The results of the AMMI model analysis were interpreted on the 
basis of three AMMI graphs: (a) the graph  that  showed  the  main 
and first multiplicative axis term (PC1) of both genotypes and 
environments, (b) the graph that showed nominal yield (expected 
yield from the AMMI model equation without environmental 
deviation) of genotypes across PC1 scores of environments, and 
(c) the biplot that used scores of environments and genotypes PC1  
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Table 1. AMMI analysis of variance for grain yield (kgha-1) of 11 soybean genotypes grown at 12 environments (combination of 
four locations and three years). 
 

Source of variation DF SS MS F value Explained % of GEISS
Treatments  131 155856296.09 1189742.718   
Replications (E) 24 3735457.99 155644.08 2.12**  
Environments (E)  11 95197867.84 8654351.62 118.122**  
Genotypes (G) 10 7462423.38 746242.34 10.185**  
GEI 110 53196004.87 483600.04 6.601**  
  AMMI 1 20 20591452.17 1029572.61 14.0525** 38.71 
  AMMI 2 18 15315319.42 850851.08 11.613** 28.79 
  AMMI 3 16 7087576.19 442973.51 6.0461** 13.32 
  AMMI 4 14 3709491.69 264963.69 3.6164** 6.97 
  AMMI 5 12 3070563.70 255880.31 3.4925** 5.77 
  Residual 30 3421601.7 114053.39 1.556ns 6.43 
Pooled error 240 17583942.2 73266.4   
CV=19.12           R2=0.9   

 

** Significant at the 0.01 probability level; ns= non significant; DF = degree of freedom; SS = sum of squares; MS = mean sum of 
squares; CV = coefficient of variation, R2 = coefficient of determination. 

 
 
 
against scores of environments and genotypes of the second  
multiplicative axis term (PC2). The GGE biplots were constructed from 
the first two principal components (PC1 and PC2) derived by 
subjecting the environment-centered yield data (which contains G and 
GE) to singular valued composition (SVD) (Yan, 2002; Yan et al., 
2000). GGE biplots were used to compare the performance of 
different genotypes at an environment, compare performance of a 
genotype at different environments and to compare the performance 
two genotypes at all environments. Both AMMI and GGE biplots were 
constructed using a SigmPlot version 10.0 software (SYSTAT 
Software Inc., 2006).   
 
 
RESULTS AND DISCUSSION 
 
The AMMI analysis of variance of grain yield (kg ha-1) of 
11 soybean genotypes tested in 12 environments is 
presented in Table 1. The analysis showed that soybean 
grain yield was significantly (p<0.01) affected by environ-
ments (E), genotypes (G) and genotype x environment in-
teraction (GEI). Environment significantly explained about 
61.08% of the total sum of squares due to treatments (G 
+ E+ GEI). A large yield variation explained by environ-
ments indicated that the environments were diverse, with 
large differences among environmental means causing 
most of the variation in grain yield. Environment grain 
yield (averaged across genotypes) ranged from 733.4 
kgha-1 at Awassa in 2004 to 2592.2 kgha-1 at Abobo in 
2003 (Table 2). Only the small portion that is, 4.79% of 
the total sum of squares due to treatments was attributed 
to genotypic effects. Genotype grain yield (averaged 
across environments) ranged from 1187.6 kgha-1 (TGx-
1185-10) to 1718.8 kgha-1 (TGx-1892-10F) (Table 2). GEI 
significantly explained 34.13% of the treatments variation 
in grain yield. The magnitude of the GEI sum of squares 
was about 7 times larger than that for genotypes, indicat-
ing that there were sizeable dif-ferences in genotypic 

response across environments. The GEI was a crossover 
type as revealed by differential yield ranking of genotypes 
across environments (Table 2). Genotype TGx-1892-10F 
was the top ranking geno-type at four environments while 
TGx-1876-4E at three environments. TGx-1892-10F 
recorded the top yield 3767.3 kgha-1 at the highest yield-
ing environment (Abobo in 2003) whereas the released 
cultivar Davis was the highest yielder (1515.6 kgha-1) at 
the lowest yielding environment (Awassa in 2004).  

The application of AMMI model for partitioning of GEI 
(Table 1) revealed the first five terms of AMMI were 
significant using an approximate F-statistic (Gollob, 
1968). The Gollob’s test most often retains the multipli-
cative axis terms of little practical relevance that is, axis 
with a low proportion of explained GE variation (Voltas et 
al., 2002). In this study, the first and second multiplicative 
axis terms explained 38.71 and 28.79% of GEI sum of 
squares, respectively. The adequacy of the multiplicative 
terms containing the real structure of GEI was inspected 
by estimating the amount of noise present in the interact-
tion from the pooled error and comparing it with the sum 
of squares retained in consecutive AMMIn models (Voltas 
et al., 2002). Accordingly, the GEI con-tained 73266.4 
(pooled error mean square) x 110 (degree of freedom for 
GEI) = 8059304 noise sum of square (15.2%) and 
55196004.87 - 8059304= 45136700 pattern sum of 
square (84.8%). This last percentage was larger than that 
retained by the first two multiplicative terms that together 
accounted for 67.50% of GEI sum of squares. Moreover, 
the first two terms had sum of squares greater than that 
of genotypes and were highly significant (p<0.01). This 
suggested the AMMI model with first and second 
multiplicative terms was adequate for cross-validation of 
the yield variation explained by GEI in the present data 
set since  it  excludes  most  of  its  actual  noise.  Further 
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Table 2. Mean grain yield (kgha-1) of the genotypes across environments. 
 

Genotypes Environments† 
Code Name BK02 PW02 AB02 AW02 BK03 PW03 AB03 AW03 BK04 PW04 AB04 AW04 Mean 

G1 TGx-1185-10 1305.7 1233.3 1024.0 1001.2 784.1 1784.9 2676.7 889.8 371.2 566.0 1596.3 1017.4 1187.6d 
G2 TGx-1835-10F 1594.3 1297.9 1478.0 650.6 1489.3 1977.9 2360.0 1126.0 1312.3 657.8 3144.4 244.0 1444.4bc 
G3 TGx-1892-10F 2080.3 1242.7 1833.7 1265.5 1660.0 1531.5 3767.3 1338.6 1345.8 1025.0 2198.3 1336.4 1718.8a 
G4 TGx-1895-23F 1625.0 1387.2 1385.1 590.6 1722.7 2072.9 2050.3 1005.3 1353.3 1113.3 1595.6 187.2 1340.7cd 
G5 TGx-1897-17F 1828.7 1733.3 1255.0 740.0 986.0 1785.1 2152.3 1090.1 1497.8 1503.0 1952.6 625.6 1429.1bc 
G6 TGx-1876-4E 1869.7 2322.2 975.3 825.1 1436.0 1858.9 2545.0 1303.3 2295.1 1803.4 1184.9 564.3 1581.9ab 
G7 TGx-1895-4F 1893.0 1626.1 1380.3 393.4 1246.0 1886.0 3055.0 1428.7 932.8 1098.6 2128.6 120.7 1432.4bc 
G8 TGx-1805-8F 1509.3 1703.8 1233.8 782.6 493.7 1869.5 3010.0 1185.6 1422.4 713.1 2842.2 407.0 1431.1bc 
G9 TGx-1895-22F 1265.0 1839.6 1254.2 1056.8 1389.7 1608.5 2759.0 1164.9 1085.4 1085.9 1388.7 777.4 1389.6bcd 

G10 Davis 1767.7 1044.4 961.2 959.1 1701.7 1440.2 2285.3 948.6 886.7 761.4 1841.9 1515.6 1342.8cd 
G11 Cocker-240 1733.0 1212.1 1418.2 1169.3 1593.7 1768.7 1853.0 1123.6 902.3 578.1 559.0 1272.2 1265.3cd 

 Mean 1679.2bc 1513.0cd 1290.8ed 857.7gh 1318.4ed 1780.4b 2592.2a 1145.9ef 1218.6e 991.4fg 1857.5b 733.4gh 1414.9 
 

†Abbreviations: BK02 = Bako in 2002; PW02 = Pawe in 2002; AB02 = Abobo in 2002; AW02 =  Awassa in 2002; BK03 = Bako in 2003; PW03 = Pawe in 2003; AB03 = Abobo in 2003; AW03 = 
Awassa in 2003; BK04 = Bako in 2004; PW04 = Pawe in 2004; AB04 = Abobo in 2004; AW04 = Awassa in 2004. 
Mean followed by similar letters are not significantly different at the 0.05 probability level based on Tukey’s Studentized Range (HSD) test; underlined values are highest yields at each test 
environments. 

 
 
 
actual noise. Further AMMI axes (3rd, 4th, 5th and 
residuals) captured mostly noise and therefore did 
not help much for cross-validation of the yield 
variation explained by the GEI in soybean. Zobel 
et al. (1988) stated AMMI with the first two 
multiplicative terms was the best predictive model. 
Thus, the approximation of factual interaction 
pattern of the 11 soy-bean genotypes with 12 
environments was best cross-validated with the 
first two multiplicative terms of genotypes and 
environments that easily visualized with the aid of 
a biplot (Figure 3).  
 
 
AMMI biplot analysis 
 
Figure 1 is AMMI biplot where genotypes and 
environments are depicted as points on a plane. 
The abscissa showed the main effects and the 

ordinate showed the first multiplicative axis term 
(PC1). The horizontal dotted line showed the 
interaction score of zero and the vertical dotted 
lines indicated the grand mean yield. Displace-
ment along the vertical axis indicated interaction 
differences between genotypes and between envi-
ronments, and displacement along the horizontal 
axis indicated difference in genotype and environ-
ment main effects. The solid line connecting environ-
ment markers indicated the year-to-year variation 
within individual location. The AMMI biplot illustrated 
79.08% of treatments SS (155856295.65), with 
4.79% due to G SS (7462423.38), 61.08% due to E 
SS (95197867.84), and 13.21% due to PC1 SS 
(20591452.17). The genotypes with PC1 scores 
close to zero expressed general adaptation 
whereas the larger scores depicted more specific 
adaptation to environments with PC1 scores of the 
same sign (Ebdon and Gauch, 20-02a).  

Therefore, genotypes like G2 (TGx-1835-10F) 
and G8 (TGx-1805-8F) with larger PC1 score 
were better adapted to Abobo in 2004 with larger 
and same sign PC1 score (Figure 1) which 
combination results in a larger positive interact-
tion. In contrast, genotype G11 (Cocker-240), 
was adapted to Awassa in 2002 and 2004 with 
larger negative PC1 scores. The relative 
magnitude and direction of genotypes along the 
abscissa and ordinate axis in biplot is important 
to understand the response pattern of geno-types 
across environments. The best genotype should 
combine high yield and stable per-formance 
across range of production environ-ments. For 
example, the two high yielding (averaged over 
environments) genotypes G3 (TGx-1892-10F) 
and G6 (TGx-1876-4E) can best judged based on 
their stability. G3 (TGx-1892-10F) combined low 
absolute  PC1   score  and  high  yield  would  be
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Figure 1. AMMI biplot showing the main and   interaction (PC1) effects of both genotypes and 
environments on grain yield. An estimate of the GE interaction effect for a specific genotype–
environment combination is the product of their corresponding interaction PC1 scores.  AMMI, 
Additive main effects and multiplicative interaction; PC, Principal component analysis axis. 
Abbreviations of environments and genotypes are as given in Table 2. 
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Figure 2. Nominal grain yield of 11 soybean genotypes based on AMMI model equation without 
environmental deviation, across environment PC1 score. Abbreviations of environments and genotypes are 
as given in Table 2.  
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Figure 3. AMMI biplot analysis showing the mega-environments and their respective high 
yielding genotypes. Abbreviations of environments and genotypes are as given in Table 2. 

 
 
 
best overall winner with relatively   less   variable  yield  
across  environments. The stability ranking of genotypes 
based on lower absolute PC1 scores was G5 (1.19), G3 
(2.12), G1 (2.20), G4 (3.32), G9 (7.97), G10 (10.35), G6 
(12.1), G7 (13.22), G2 (23.73), G8 (25.53) and G11 
(29.84). 

Pawe and Bako had the relatively smaller variation in 
the interaction (PC1 score) from year to year while 
Abobo had the largest (Figure 1). This indicated that the 
relative ranking of genotypes were stable at Pawe and 
Bako than at Abobo. Abobo was described as a location 
that combined larger main effects with larger interaction 
effects making it less predictable location for soybean 
variety evaluation.  

The performance of the genotypes was also evaluated 
with nominal yields (Figure 2) estimated based on the 
AMMI model equation without the environmental devia-
tion (that is, based on G and GEI PC1 effects only) 
across environment PC1 scores. Such analysis helps in 
targeting genotypes onto its growing environments 
(Samonte et al., 2005). Therefore, the adaptation pat-
terns of the genotypes were assessed based on average 
environment PC1 score (which was 0.008). G3 (TGx-
1892-10F) had the highest nominal grain yield at majority 
the test environments with environment PC1 score grea-
ter than 0.008. This genotype also recorded highest no-
minal yield in majority of the test environments with 
environment PC1 score below 0.008. Based on the fre-
quency that genotypes were expected to  yield  highest in  

a location TGx-1892-10F  best qualified  for  national  re- 
commendation for cultivation by growers. 

Figure 3 cross-validated the interaction pattern of the 
11 soybean genotypes with 12 environments. The 
distances from the origin (0, 0) are indicative of the 
amount of interaction that was exhibited by genotypes 
either over environments or environments over geno-
types (Voltas et al., 2002). With the present data set, the 
genotype G6, G8, G2, G3, G10 and G11 expressed a 
highly interactive behaviour (positively or negatively), 
whereas the environment Awassa in 2003 exhibited low 
interaction. The nearly additive behaviour of Awassa in 
2003 indicated that genotypic yield in that environment 
was highly correlated with the overall genotypic means 
across environments. Among the extreme genotypes, G2 
and G8 are located in pairs indicating their similar re-
sponse pattern. Connecting the extreme genotypes on a 
GE biplot forms a polygon and the perpendiculars to the 
sides of the polygon form sectors of genotypes and sites 
(Hernadez and Crossa, 2000). The genotypes at vertex 
are the winners in the sites included in that sector (20). In 
the AMMI biplot (Figure 3), seven sectors of which six 
had environments were observed. Pawe in both years 
clustered in one sector indicating repeatable performance 
of the genotypes observed in this location and it could be 
considered as separate mega-location for soybean va-
riety evaluation and recommendation. Bako in all the test 
years relatively closer to biplot origin and hence less in-
teractive location and could be good enough location for 
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Figure 4. GGE biplot obtained from sites regression (SREG) analysis showing the performance of 
different genotypes at Abobo in 2003. Abbreviations of environments and genotypes are as given 
in Table 2. 

 
 
 
selection of genotypes with average adaptation.  
 
 
SREG GGE biplot analysis 
 
The GGE refers to the genotype main effect (G) plus the 
genotype-by-environment interaction (GE), which are the 
two sources of variation of the site regression (SREG) 
model (Yan et al., 2000, 2007). GGE biplot best fits for 
which-won-where pattern analysis, genotype, and test 
environment evaluation (Yan et al., 2007). The biplot from 
the SREG model is used for assessment of ideal 
genotype and test location in multi-environment data 
provided that a given data set has a high correlation 
between PC1 and G main effects (Crossa et al., 2002; 
Yan et al., 2000). However, the requirement for a near-
perfect correlation between genotype PC1 scores and 
genotype main effects was not happened with the 
present data set (In this case r = 0.45). This precondition 
restricts the utility of the GGE biplot for visualization of 
the yielding ability and stability of the genotypes, and the 
discriminating ability and the representativeness of the 
test environments (Gauch, 2006). This weakness was 
better captured with AMMI analysis in previous sections.  

The GGE biplots of SREG analysis results were used 
to show the relative performance of all genotypes at a 
specific environment (Figure 4), relative adaptation of a 
specific genotype across environments (Figure 5) and 
comparison of two genotypes in different environments 
(Figure 6). In Figure 4, the highest yielding environment 
among the 12 environments, Abobo in 2003, was used to  

evaluate the genotypes. Apparently, a line that pass 
through the biplot origin and the environment marker of 
AB03 (Abobo in 2003) and a broken lines drawn from 
each genotypes marker perpendicular to the AB02 axes 
was used to compare the relative yield of genotypes. The 
genotypes were ranked based on length of their project-
tions from AB02 axis and  a broken line that is perpen-
dicular to the AB03 axis  and that pass through the origin 
separates the genotypes with higher than average yield 
from those with  lower than  average yield (Yan et al., 
2000). Hence, G2, G8, G3 and G7 yielded above 
average yield at Abobo in 2003 and the rest genotypes 
yield performance was below average.  

In Figure 5, the relative adaptation of G3 (TGx-1892-
10F) which was identified as best genotype with AMMI 
analysis was assessed. This was done by drawing a line 
that pass through the biplot origin and G3 marker and a 
broken line drawn from each environment marker 
perpendicular to the G3 axis. The length of environment 
projections onto G3 axis assessed the performance of G3 
at different environments, relative to other genotypes. 
Hence, G3 would yield highest at Abobo in all years 
(2004, 2002 and 2003) followed by Awassa in all years 
(2004, 2002 and 2003), Pawe in 2003, Bako in 2002 and 
in 2003, Pawe in 2002, Bako in 2004 and Pawe in 2004. 
The broken perpendicular line to the TGx-1892-10F axis 
and pass through the origin divided the environments 
where TGx-1892-10F would yield above average and below 
average. Hence, its yield performance was above 
average at Abobo in all the test years and at Awassa in 
2004 and 2002. 
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Figure 5. GGE biplot obtained from site regression (SREG) analysis showing the performance of 
G3(TGx-1892-10F ) at different locations. Abbreviations of environments and genotypes are as 
given in Table 2. 

 
 
 

The performance of the top two yielding genotypes (G3 
and G6) compared in GGE biplot by a straight line 
connecting the markers of the two genotypes and a 
broken perpendicular line passing plot origin (Figure 6). 
This perpendicular divided the environments into two 
groups; each of these genotypes would yield better than 
the other at environments with markers on its side of the 
perpendicular, and vice versa (Yan et al., 2000). Thus, 
G3 (TGx-1892-10F) would yield better than G6 (TGx-
1876-4E) at Abobo (in 2002, 2003 and 2004) and at 
Awassa in 2002 and 2004 whereas TGx-1876-4E would 
yield better than TGX-1892-10F at the rest 11 environ-
ments that is, at both Pawe and Bako in all the years and 
at Awassa in 2003.   
 
 
Conclusion 
 
Needless to mention, GEI is a common phenomenon in 
variety trials and its presence usually complicates variety 
selection and release decision. This paper demonstrated 
the AMMI and SREG GGE models were very effective for 
studying the pattern of GEI and interpreting of soybean 
grain yield data from multi-environment trials. AMMI 
model provided the relative magnitude and importance of 
the effects of GEI and its interaction terms related with 
genotype and environmental effects. It revealed that the 

GEI was an important source of soybean yield variation 
and its biplots were effective enough for visualizing the 
response patterns of genotypes and environments. The 
GGE model aided in determination of the relative per-
formance of genotypes at a specific environmental com-
parison of the performance of genotypes at different 
environments and identification of genotypes suitable for 
groups of environments. 
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