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This study investigated the predictive ability of neural networks in the estimation of methane yield (MY) 
and effluent substrate (Se as mg/L COD) produced by two anaerobic filters, one mesophilic (35°C) and 
one thermophilic (55°C), which were operated to treat paper-mill wastewater at varying organic 
loadings. An artificial neural network (ANN) architecture was optimized to obtain a three-layer neural 
network, composed of three inputs, namely hydraulic retention time (HRT), organic loading rate (OLR), 
and influent substrate (Si as mg/L COD), six hidden neurons and one output neuron, Se or MY. Stover-
Kincannon model and Multi-linear regression (MLR) technique was also used for data analysis and to 
compare the prediction capability. Four statistical criteria also used for comparison were mean square 
error (MSE), mean absolute error (MAE), mean absolute relative error (MARE), and determination 
coefficient (R

2
). The results showed that ANN approach predicted the performance of the anaerobic 

filters better than both Stover-Kincannon model and MLR technique. 
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INTRODUCTION 
 
Many kinetic and mechanistic models have been 
proposed to understand the treatment process of 
anaerobic reactors including linear models such as 
Monod and Stover-Kincannon and non-linear models 
such as axial dispersion model (Singhal et al., 1998) and 
dynamic model (Wu and Hickey, 1997). However, several 
researchers pointed out that none of the mechanistic 
models able to completely explain or predict the 
performance of an upflow anaerobic sludge blanket 
(UASB) reactor treating industrial or domestic wastewater 
under various input conditions (Sinha et al., 2002; Mu 
and Yu, 2007; Singh  et al., 2010). Therefore, new 
approaches are required for the estimation of the 
treatment performance of anaerobic reactors. One of the 
relatively   new  computational  tools  is   Artificial   Neural 

Network (ANN), which has already been applied to a 
wide spectrum of problems in a variety of fields, such as 
finance (Budcema and Sacco, 2000), medicine (Papik et 
al., 1998), physics (Fang and Wu, 2007), geology 
(Yuanyou et al., 1997), hydrology (ASCE Task 
Committee on Application of Artificial Neural Networks in 
Hydrology, 2000a; ASCE Task Committee on Application 
of Artificial Neural Networks in Hydrology, 2000b), and 
environmental engineering (Yilmaz et al., 2010). 

Among the anaerobic treatment processes, upflow 
anaerobic filter reactors (UAFR) are gaining more 
popularity with reduced probability of sludge bulking and 
flotation while providing degradation rates similar to other 
anaerobic treatment processes. After an extensive 
literature search,  it  has  been  realized  that  there  is  no
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literature information on ANN application to model the 
performance of UAF reactor treating paper-mill 
wastewater while they have been applied to UASB 
reactors (Sinha et al., 2002; Mu and Yu, 2007; Singh  et 
al., 2010). The performance of mesophilic and 
thermophilic UAF reactors treating paper-mill wastewater 
was evaluated and modeled using a well-known Stover-
Kincannon model in our previous study (Yilmaz et al., 
2008). In order to further understand the methane 
producing mesophilic and thermophilic reactors, it is 
essential to develop new models to quantitatively 
describe the reactor performance. Furthermore, accurate 
estimation of methane yield (MY) and effluent substrate 
(Se as mg/L COD) will lead to time conservation and cost 
reduction in the operation instead of measuring these 
parameters repeatedly. 

Therefore, the objective of this study is to establish and 
apply an ANN model to simulate the performance of UAF 
reactor. Multi-linear regression (MLR) technique was also 
used for data analysis and to compare the prediction 
ability of the developed models. Mean square error 
(MSE), mean absolute error (MAE), mean absolute 
relative error (MARE), and determination coefficient (R

2
) 

were used as statistical means for comparison between 
the modeling approaches. 
 
 
THEORETICAL BACKGROUND OF THE METHODS 
 
Multi-linear regression (MLR) 
 
The relationship between a dependent variable and 
independent variables can be linearly constructed by 
MLR method, where the dependent variable, y, is 
regarded as a linear function of p number of independent 
variables, x1, x2,..., xp. In this case, the linear relationship 
can be described with the following equation: 
 

  pp xxxy .........22110          (1) 

 

where ε denotes the residual, which is a normally 
distributed random variable with a mean of zero. The 
regression coefficients, β0, β1, β2,…, βp, are computed for 
the lowest sum of squares of differences between the 
predicted and observed values (Bayazıt and Oguz, 
1998). 
 
 

Artificial neural network (ANN) model 
 

McCulloch and Pitts (1943) were the first to introduce 
artificial neural networks (ANNs) as modeling tools and 
the interest in these tools grew until Minsky and Papert 
(1969) demonstrated the training difficulties and low 
effectiveness in training. It was Rumelhart et al. (1986) 
who rediscover a calibration algorithm that could be used 
to train networks for sufficient sizes while simplifying  the  
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complexities for practical purposes. Since then, research 
with the focus on ANNs has expanded resulting in the 
evolution of a number of different network types, training 
algorithms and tools.  

When sufficient data is provided for a given complexity, 
ANNs can be easily trained to model any relationship 
between a series of independent and dependent 
variables. This flexibility has enabled ANNs to be 
considered as a set of global predictors and to be usefully 
applied to a wide variety of problems that are difficult to 
understand, define, and quantify. In the context of this 
paper, ANNs are trained to represent the relationship 
between a range of operating parameters of OLR, HRT, 
and Si as input parameters and associated output 
parameters of MY and Se. There is no need for the 
modeler in this case to fully define the intermediate 
relationships between the input and output variables that 
the ANN identifies during the „learning process‟.  

There are various network types and training 
algorithms described and used in the literature. However, 
this paper focuses on only the Multi-Layer Perceptron 
(MLP) approach, which is the most referred ANN tool. 
Figure 1 provides an overview of the MLP structure. MLP 
employs three layers of neurons - an input layer, a hidden 
layer, and an output layer - with each neuron consisting 
of a number of inputs provided from outside the network 
or the previous layer and a number of outputs leading to 
the subsequent layer or out of the network. The output 
response is computed by neurons based on the weighted 
sum of all inputs according to an activation function. The 
data flows from external inputs, which are transmitted 
through the hidden layer, to the output layer from which 
the external outputs are obtained. The training of the 
network is then continued by adjusting the weights that 
connect the neurons using Levenberg-Marquardt 
algorithm. Interested readers are suggested to refer to 
neural network texts for more detailed coverage such as 
Haykin (1998). 
 
 
MATERIALS AND METHODS 
 
The data used for training and testing the MLR and ANN models 
were obtained from two laboratory-scale UAF reactors, one 
mesophilic (35°C) and one thermophilic (55°C) which were 
operated to treat paper-mill wastewater under varying organic 
loading rates. The paper-mill wastewater used in the study was 
obtained from a local paper mill plant, which processes and 
recycles scrap and waste paper collected from various sources. 
These paper materials are mostly collected from the rubbish bins or 
collection sites operated by governmental offices and bureaus for 
recycling. The characteristics of the paper-mill wastewater used 
herein are given in Table 1. Detailed information about the reactors 
and analytical methods can be found in our previous paper (Yilmaz 
et al., 2008). 

The MLR technique described in this study was employed using 
MINITAB software program, whereas, ANN model was employed in 
MATLAB v.7.6 and run under the Microsoft Windows XP 
environment. Predicted results by the MLR and ANN models from 
the present study were compared  with  real  measurements  in  the
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Figure 1. Multi-Layer Perceptron (MLP) structure. 

 
 
 
Table 1. Characteristics of paper-mill wastewater. 
 

Parameter Concentrations (mg/L) 

COD  1972 – 3536 (2701 ± 641) 

SCOD  1032 – 2342 (1335 ± 427) 

Total nitrogen  4.8 – 3.7 

BOD5  1058 – 1489 (1201 ± 304) 

Alkalinity (as CaCO3) 350 

TSS  916 – 3100 (1201 ± 304) 

Suspended solids after settlement  205 

Total hardness (as CaCO3 ) 500 

Ca
2+

 150 

Mg
2+

 30.45 

Boron  0.27 

pH  7.6 – 7.0 (7.45 ± 0.29) 

 
 
 
lab-scale reactors with respect to statistical mean square error 
(MSE), mean absolute error (MAE), mean absolute relative error 
(MARE), and determination coefficient (R2). MSE, MAE and MARE 
were found by the following equations: 
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In Equations  2  to  4,  
m

iE  and  
p

iE   denote  the  measured  and 

predicted output parameters, respectively, and N is the total 
number of data. 

 
 
RESULTS AND DISCUSSION 
 
Application of multi-linear regression (MLR) and 
artificial neural network (ANN) 
 
A total of 114 experimentally determined data sets were 
used with equal numbers of data for mesophilic and 
thermophilic digesters in this study. One of the most 
complex tasks is the selection of variables to be used in 
modeling the system. An important essential variable is 
the organic loading rate (OLR), which is well correlated 
with the Hydraulic Retention Time (HRT) (R

2
=0.97) and 

the methane yield (MY) (R
2
=0.89). The substrate 

concentration (Si as mg/L COD) in the influent is the most 
important variable to consider as it will influence the 
substrate concentration (Se) in the effluent. The 
determination coefficient, R

2
, was equal to 0.79 between 

Se and Si. By taking the above considerations into 
account, organic loading rate (OLR), hydraulic retention 
time (HRT), and influent substrate (Si) were the three 
variable sets analysed as input variables along with two 
corresponding output variables, that is, methane yield 
(MY) and effluent substrate (Se). 

As described in the literature, ANNs are similar to 
conventional statistical models in the sense that model 
parameters (for example, connection weights) are 
adjusted in the model calibration phase (training) so as to 
minimize the error between the model outputs and the 
corresponding measured values for a particular data set 
(the training set). Like all models, ANNs also perform 
best when they do not extrapolate beyond the range of 
the data used for calibration (Minns and Hall, 1996; Tokar  
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Figure 2. Sets of input variables used for training and validating the models for methane producing UAF reactor: (a) HRT for 
training; (b) HRT for testing; (c) OLR for training; (d) OLR for testing; (e) Si for training; and (f) Si for testing. 

 
 
 

and Johnson, 1999). Thus, the purpose of ANNs is to 
non-linearly interpolate within high-dimensional space 
between the data used for calibration. Therefore, a 
separate validation set is needed to ensure that the 
model can generalize within the range of the data used 
for calibration. It is common practice to divide the 
available data into two subsets; a training set, to 
construct the neural network model, and an independent 
validation set to estimate the model performance in a 
deployed environment (Maier and Dandy, 2000). For this 
purpose, the operational data set was randomly split into 
two subsets, with 82 data sets corresponding to 75% of 
the whole data being used for training and 32 data sets 
corresponding  to   25%   of   the  data   for    testing    the 

performance of the artificial neural network.  The subsets 
were chosen randomly in order to not jeopardize the 
determination of the trend between the independent 
variables and the dependent variable. As long as the 
randomization technique was applied, the results proved 
to be similar based on our various trials. One important 
aspect here is to make sure that the minimum and 
maximum of the testing data set falls within the minimum 
and maximum of the training data set. Sets of input 
variables used to train and test the models are shown in 
Figure 2. 

In the current work, the MLR and ANN techniques were 
firstly applied to the training dataset. Using MLR 
technique, the following equations were found to offer the
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Table 2. Minimum and maximum values of the input and output parameters. 
 

Model parameter 
Training data set Testing data set 

Min Max Min Max 

HRT(Day) 0.229 1.098 0.248 1.019 

Si (g/l) 1.038 3.210 1.045 3.200 

OLR (g COD/l day) 1.002 12.829 1.035 12.685 

MY (Lmethane/gCOD) 0.130 0.350 0.180 0.330 

Se 0.162 0.912 0.190 0.711 

 
 
 
best statistical measures for a good fit of the training 
dataset: 
 
MY = 0.1575 - 0.0356 HRT + 0.0756 Si - 0.0083 OLR  (5) 
Se =- 0.1822 + 0.0865 HRT + 0.2954 Si - 0.0092 OLR (6) 
 
Before applying the ANN model to the observed data, the 
input and output values for the training step were 
normalized using the following equation: 
 

b
xx

xx
a i 





minmax

min                                             (7) 

 
where xmin and xmax denote the minimum and maximum of 
the input and output parameters provided in Table 2. 
There are no fixed rules for which standardization 
approach should be used for the scaling factors, “a” and 
“b”, in particular circumstances, to which different values 
can be assigned (Dawson and Wilby, 1998). The values 
of a and b were taken as 0.6 and 0.2, respectively. The 
scaling factors were chosen as 0.2 and 0.8 in order to 
give the ANNs the flexibility to predict flows beyond the 
training range.  Based on our trials, higher flexibility of the 
ANN model was obtained for these scaling factors. This 
means that the ANN model can be applied for some data 
out of the range of the training dataset. 

In this study, the performance of various network 
models with different hidden layer neuron numbers was 
examined to choose an appropriate number of hidden 
layer neurons. Hence, one neuron was used in the 
hidden layer at the beginning of the process, and then the 
neuron number was gradually increased by adding one 
more neuron until no significant improvement is noted. 
The number of hidden nodes was determined using trial 
and error method. In the current study, the ANN was 
trained using Levenberg–Marquardt technique because 
this technique was proved to be more effective than the 
conventional gradient descent technique (Haykin, 1998). 
The ANN networks training were stopped after 50 epochs 
since the variation of error was too small after this epoch. 

The tangent sigmoid, logarithmic sigmoid and pure 
linear transfer functions were tried as activation (transfer) 
functions for hidden and output layer neurons to 
determine the best  network  model.  After  trying  various 

network structures and iteration numbers, the most 
appropriate results were obtained from the ANN (4, 6, 1) 
and ANN (4, 8, 1) models for estimating MY and Se, 
respectively. 

In order to demonstrate the predictive ability of MLR 
and ANN models, experimental MY and Se values were 
plotted against their corresponding values obtained by 
training and testing in the modeling as shown in Figures 3 
to 6. For the sake of better evaluation of the results, an 
equality line has been drawn. The determination 
coefficients (R

2
) for MY (0.7618) and Se (0.8598) in 

training phase demonstrate that ANN learned the 
relationship between the input and output data better 
than MLR, which produced R

2
 values of 0.5166 and 

0.7616 for MY and Se, respectively. Similarly, in the 
testing phase, the determination coefficients for MY 
(0.8748) and Se (0.8622) suggest that the tested ANN 
model again obtained better estimations than those of 
MLR with R

2
 values of 0.7986 and 0.8263 for MY and Se, 

respectively. 
The inference above was supported by the MARE, 

MAE, and MSE values when both models were 
compared. For the quantitative evaluation of the 
comparison between the predicted MY and Se values 
using the MLR and ANN models and the measured 
values, MSE, MAE and MARE, are also provided as 
given in Table 3. The statistical values indicate that, in 
terms of MSE, MAE, and MARE, the ANN model 
performs slightly better than the MLR technique in the 
estimation of both MY and Se. For example, for MY, 
MARE values were 10,963 for MLR and 7,837 for ANN in 
training, whereas MARE values were 7,361 for MLR and 
5,427 for ANN in testing. 

For both training and testing phases, neither ANN nor 
MLR indicated systematic over- or under-prediction 
based on output variables. Therefore, both MLR and 
ANN were appropriate to predict the outputs of the UAF 
reactor although the latter produced slightly more 
accurate results. 
 
 
Comparison of artificial neural network (ANN) and 
multi-linear regression (MLR) with Stover-Kincannon  
 

The linearised Stover-Kincannon model  for  steady  state
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Table 3. MSE, MAE, MARE, and R2 statistics of ANN and MLR models for both 
training and testing phases. 
 

Parameter Criteria 
Training Testing 

MLR ANN MLR ANN 

MY 

MARE 10.963 7.837 7.361 5.427 

MAE 0.025 0.018 0.019 0.014 

MSE 0.001 0.001 0.001 0.0003 

R
2 

0.5166 0.7618 0.7986 0.8748 

      

Se 

MARE 15.745 10.879 14.843 10.080 

MAE 0.065 0.046 0.055 0.040 

MSE 0.009 0.005 0.006 0.004 

R
2
 0.7616 0.8589 0.8263 0.8622 

 
 
 

 
 

Figure 3.  Plot of observed and predicted MY values by MLR and ANN for training phase. 

 
 
 
conditions is given as follows (Tay et al., 1996): 

 

maxmax

B

U

1

QSi

V

U

K

)SeSi(Q

V












                    (8) 

 
Yilmaz et al. (2008) previously plotted V/Q(Si-Se) versus 
1/OLR using the same data analyzed in this work and 
determined   the   following   relationship   equations  with 

KB/Umax as the slope and 1/Umax as the intercept for the 
mesophilic and thermophilic digesters, respectively: 
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Figure 4.  Plot of observed and predicted Se values by MLR and ANN for training phase. 

 
 
 

 
 

Figure 5.  Plot of observed MY and predicted values by MLR and ANN for testing phase. 
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Figure 6. Plot of observed and predicted Se values by MLR and ANN for testing phase. 

 
 
 
After some arrangements, Equations 9 and 10 
determined by Yilmaz et al. (2008) can be expressed as 
follows for the mesophilic and thermophilic digesters, 
respectively: 
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Herein, Equations 11 and 12 developed based on Stover-
Kincannon model were applied to the data obtained from 
the mesophilic and thermophilic digesters and were 
compared to the MLR and ANN models in terms of Se 
(Figure 7). Using the ANN model, coefficients of 
determination obtained for Se estimation were 0.8890 
and 0.8404 for mesophilic and thermophilic digesters, 
respectively, suggesting that the ANN model is better in 
estimating the Se than those of Equations 11 and 12 
based on Stover-Kincannon model, which produced R

2
 of 

0.7574 and 0.7835 for mesophilic and thermophilic 
digesters, respectively. It should be  noted  that  the  MLR 

technique was similar to Stover-Kincannon model in 
predicting Se where R

2
 were 0.7894 and 0.7871, 

respectively. 
 
 
Conclusions 
 
This study demonstrates that it is feasible to apply ANN 
modeling technique to simulate the performance of UAF 
reactor producing methane under various operating 
conditions such as organic loading rate (OLR), hydraulic 
retention time (HRT), and influent substrate (Si). The 
results showed that Se and MY can be simulated well by 
both MLR and ANN models although the latter produced 
more accurate estimations than MLR. The MLR models 
proposed herein are rough approximations of nonlinear 
models with similar results to those of Stover-Kincannon. 
Therefore, MLR is suggested that it can be used for the 
preliminary analysis of UAF reactor as well as Stover-
Kincannon instead of ANN. 

The predictive ability of different neural network 
approaches is usually case dependent. It would be 
interesting to find out how some of the other models such 
as neuro-fuzzy inference approach, Bayesian neural 
networks, and radial basis neural networks would predict. 
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Figure 7. Plot of observed and predicted Se values by (a) Stover-Kincannon model, (b) MLR model, and (c) ANN model for 
mesophilic and thermophilic digesters. 
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