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Dangling bonds on CNT (Carbon NanoTube) surface induce the spurious surface states. These 
dangling bonds can be bonded by incoming nano particles which is associated wave function with 
different characters (localization at the surface) in respect to real quantized states. When the 
translational symmetry is broken, we can limit the calculation to an area like a ring or a super cell. This 
can be achieved by several theoretical methods. The most widely used theoretical tools to deal with 
nano structures are based on the envelope function. The envelope of the nano structure wave function 
is relied on several approximations which have been widely debated in the literature. These approaches 
have experienced a great success mainly due to a fair compromise between simplicity of the method 
and reliability of the results. By applying the Bloch theorem for CNT structure and defining the periodic 
boundary conditions, we can find a newly defined envelop wave function for nano particles in CNT 
structure by making two approximations, namely by smooth variation of the perturbation potential and 
the effective mass approximation. For this purpose, we need to consider appropriate boundary 
conditions in order to allow such flux of particles. The obtained results show that the equation fulfills all 
wave vectors and how nano particles perturb CNT structure. 
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INTRODUCTION 
 
CNTs have attracted rapidly an increasing attention of the 
scientific community in the last decade for several 
reasons (Iijima et al., 1993). It has played an enormous 
role in the success of nano electronic device due to their 
outstanding properties. The unique electrical, thermal, 
mechanical properties cause many scientists to 
investigate about this interesting material. Because of 
small size of this structure and problems that exist in 
measurement of electrical properties, theoretical methods 
have improved more than experimental methods. 
Therefore, special experimental, analytical methods and 
computational tools are needed to study the interaction of 
incoming nano particles and CNT structure for particular 
functionalities. These interactions between nano particles 
and CNT structure can be directly understood from the 
desperation energy of a  single  walled  carbon  nanotube 
(SWCNT)   which   represents   an  elegant  illustration  of 
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Bolch's theorem at the level of individual wave functions 
(Li and Chou, 2003). 

Recently, some researchers have calculated the Van 
der waals free energy and force between an incoming 
atom (molecule) like hydrogen atom and carbon nano 
tubes (CNTs) by using Lifshitz - type formulation (Bahari, 
2009; Dai, 2002; Bahari et al., 2006b; Bahari et al., 2008; 
Bahari, 2008). Modern technology, however, has pushed 
nano structures to dimensions where Liftshitz approxi-
mation may not be as accurate as one requires. More-
over, this concept has to be substituted for instance by as 
approaches, the complexity of the problem becomes 
rapidly intractable. It has also been an important 
fundamental question regarding how interaction between 
nano particles and CNT affects CNT electrical properties. 
The point is the wave functions in CNT structure which 
are not generally Bloch wave functions. For this purpose, 
we assume that these interactions between incoming 
nano particles and CNTs are not so strong and they can 
just perturb the CNT structure. These issues are critical to 
the future advancement of nanotube science and techno- 



 
 
 
 
logy, and are being actively pursued by researchers 
(Nakhei and Bahari, 2009; Bahari and Amiri, 2009; Bahari 
et al., 2005; Morgen et al., 2005; Bahari et al., 2006a). 

In this work, we have studied nano particles interact-
tions with CNT structure. The mechanism can be under-
stood by considering these interactions. These features 
and mechanisms bear certain resemblance to conven-
tional hydrogen sensors based on semiconductor field 
effect transistors. 
 
 
Graphene sheet and CNT structure 
 
There is a variety of ways to formulate the deformation of 
SWCNTs (Li and Chou, 2003). Their results have been 
shown that deformation is so critical in studying CNT's 
properties, because it can change carbon atom positions. 

CNTs are tube-like structures that result from a special 
arrangement of carbon atoms. These nanometer-wide 
tubular arrangements of sp2 orbital are formed at 1200 to 
each other within a plane. A CNT is thereby formed when 
one single layer of graphite is wrapped onto itself and the 
resulting edges joined. The structure of a nano tube can 
be defined using a roll-up vector C(n, m) or chirality that 
are named chiral vector. The chiral vector and the 
diameter of the nanotube are defined as; 
 

a2a1n m+n=C  

nmmna ++ 223
 =D
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Where a1 and a2 denote unit vectors in a 2D graphite 
lattice. The C-C bond length, a, is 0.142 nm. SWCNT is 
named a zigzag (armchair), if n � 0 and m = 0 (n = 
m).Otherwise is known chiral. 

As mentioned above, carbon atoms in this sheet are 
arranged in a hexagonal ring and tubes are also capped 
by a hemisphere section drawn from a spherical (fulle-
rene) arrangement of carbon atoms. A SWCNT can be a 
metal, semiconductor or small - gap semiconductor 
depending on the structural parameters (Nakhei and 
Bahari, 2009; Bahari and Amiri, 2009). 

The graphene sheet lattice structure is not a Bravais 
lattice by itself, because two nearest atoms in its unit cell 
do not have the same orientation, but can be regarded as 
an underlying square (oblique) Bravais lattice with a two - 
atoms basis. 

Furthermore, for a graphene sheet, the conduction and 
valence bands touch each other at the six corner points 
of the first Broulloin zone in that these states are filled 
with the highest energy (Fermi's energy) of electrons. 
But, the electronic states of an infinitely long nanotube 
are parallel lines in K space, continuous along the tube 
axis and quantized along the circumference. This is 
because the band shift due to charge transfer interactions 
does not change the density of states at the Fermi - level  
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for a metallic tube. 

The interactions between nano tube and nano particles 
are important because of variation of CNT's structure and 
its properties with this interaction.  It is known that in 
three - dimensional bulk materials, different metals exhibit 
different interactions with carbon. 
 
 
Theory 
 
Many of researchers have pursued the analysis of CNTs 
by theoretical modeling. These models include atomistic 
and continuum models which can be classified into 
classical molecular dynamic (MD), tight-binding molecular 
dynamic (TBMD) and density functional theory (DFT). In 
general, any problem associated with atomic motions can 
be simulated by these modeling, but due to enormous 
computations, applications of these modeling are limited 
to systems with a few numbers of atoms that usually are 
short-lived phenomena. Periodicity in r - space generates 
a reciprocal lattice in k - space through the basic relation 
 

1eiK.R =                                                                          (1) 
 
Where R is translational vector and the reciprocal lattice 
vectors K may be expressed in terms of primitive 
translations bj in where 
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Where nj = 0, ± 1, ± 2... 
 
Discreteness of the k - space is achieved by imposing on 
the crystal, then the periodic boundary conditions imply 
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Where V = Lv is the crystal volume, L is the number of k - 

points contained in first Brillouin zone (Z) and  are 
integers in where 
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Of course, R is not restricted to V. Equations 1, 2 express, 
respectively, orthonormality modulo a vector K and 
closure in Z of the plane wave fields. The one - body 
Hamiltonian in a perfect crystal indicates a periodic 
potential U(r) = U (r+R). For just one electronic band  and 
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the perturbed structure, the Schrodinger equation can be 
written as 
 

)()( rErH ψψ =                                                        (3) 
 
For simplicity, we suppose these interactions perturb 
CNT structure in which the perturbation potential, Vp (r) is 
taken into account in Hamiltonian. We also assume that 
the structure is most commonly called a honeycomb 
lattice due to the hexagonal arrangement of carbon 
atoms. 

In the confinement directions, the translational sym-
metry is broken and Bloch theorem thus can be applied. 
Such boundary condition, as usual, allows a reduction of 
the problem to the unit cell which results in a reduction of 
the number of atoms considered. 
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Where Vs (r) and Vp (r) are CNT structure potential and 
perturbed potential, respectively. Since all elements in 
Equation 4 commute with each other, the wave functions 
� (r ) is the Schrodinger equation form a one - 
dimensional unitary representation of this group which 
may be parameterized by a wave vector k � Z. Thus the 
action of the translation by R is: 
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By applying the orthonormality condition in the crystal 
volume V, we have 
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The system wave function, � (r), is also expressed as a 

linear combination of unperturbed band, ),( rku ′
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We substitute Equations 4, 5 into Equation 3 and multiply  
 

it by ),(* rku ′
, so that 
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Integrating above equation over the whole structure gives 
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We put into integrals running over structure, in which Vp 
varies slowly on the CNT and is constant within each 
ring.  Translational vector, R, is defined 
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From elementary solid state physics, unperturbed band, 

),( rku obey Bloch's theorem, that is, 
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Where vk has the periodicity of the hexagonal rings. 
According to the Fourier theorem (6) 
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Where 
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Here we assume that Gkk =−′ is so small. By 
inserting Equation 7 into Equation 6, we have 
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So that 
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Where V is the volume of CNT. 
Now, we sum up it on all rings by getting integral over the 
whole CNT structure 
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We substitute Equation 9 into Equation 8 and use the 
effective   mass    approximation    for    the   unperturbed    



 
 
 
 
structure 
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Now, we define the envelop wave function as bellow 
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This description leads naturally to the notion of an elec-
tron movement in the crystal. The equations 
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Is obtained, which is fulfilled for all K only if 
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This is the envelop wave equation. Although this 
definition is still too general to be useful, the crucial step 
(in the future) is to define the creation and annihilation 
operators for a complete system (Morgen et al., 2005).  
 
 
Conclusion 
 
For systematic studies of the interaction between 
SWCNTs and nano particles, we use an analytical 
method. This method can be suggested for evaluating the 
electronic band energy of SWCNTs and clearly describe-
ing nanostructures based on the effective mass appro-
ximation. 
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