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AntNet is a routing algorithm which takes advantage of the way ants help each other to find food 
sources faster. Ants’ communication in this respect is indirect by leaving pheromone trails as they 
move. The richness and thickness of the trail is proportional to the number of ants that have passed. 
This method of indirect courtesy guidance by affecting the environment is called stigmergy. Many 
network parameters that affect the performance of AntNet algorithm. However, there is little works on 
AntNet parameter analysis. In this paper we examine the effect of AntNet parameters on its performance. 
Simulation is used to estimate performance measures. Results show that changing one specific 
parameter may not lead to an improvement in performance unless other parameters are also changed, 
accordingly. 
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INTRODUCTION 
 
A wide variety of routing algorithms exists for communi-
cation networks. In traditional routing, routing tables are 
updated within exchanging routing information between 
different routers. Distance Vector (DV) examples of such 
algorithms. 

A software agent can emulate the behavior of an ant 
and hence routing algorithms are developed that imitate 
the food source finding process of ants. The difference is 
that agents are used to find better paths between the 
message sending source and message receiver. As ants 
communicate indirectly by leaving pheromone trail as they 
move and this trail helps others to follow, agents update 
routing tables of the nodes which they go through. The 
routing tables, in turn, are used to better direct packets 
towards their destinations.  AntNet is a hop-by-hop routing 
algorithm based  on  stigmergic  property  taken  from ant 
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colonies living style. Stigmergy is a form of indirect com-
munication within modifications of the environment 
(Theraulaz, 1999; Pasteels, 1987; Buckers, 1992; 
Deneubourg, 1990).  

There are two principal parts to take care of in the 
implementation of the traditional AntNet algorithm. The 
exploration for the purpose of discovering shortest path 
and the routing table update to help others to better find 
their destinations. These two actions are performed in an 
intermixed manner. Software agents are periodically 
generated to find better paths form the node in which the 
agent is generated to all other nodes of the network. The 
same agent has the responsibility to update routing tables 
of the nodes through which it passes. This can help the 
algorithm to converge faster an in a more efficient way. 

In this paper, we investigated the how different network 
parameters affect the performance of the AntNet routing 
algorithm. The AntNet algorithm is simulated at the NS2. 
The rest of this paper is organized as follows. Section 2 
discusses the structure of networks. Section 3 is  a  detail  



 
 

 

160 Sci. Res. Essays 
 
 
 

 
 
Figure 1. Buffers at the nodes. The input buffer consist of 
one queue and the output buffer consist of a low priority 
queue and high priority queue for every outgoing link (every 
neighbor). 

 
 
 
examination of how AntNet works. In Section 4, the algo-
rithm is simulated and parameters are estimate and the 
effects of variations in the parameters are investigated. 
Finally, the conclusion of this paper is given in Section 5. 
 
 
STRUCTURE OF NETWORK IMPLEMENTS 
 
We consider a network as a graph G(N, L) consisting of N nodes 
and L duplex links. The bandwidth and initial delay of every node is 
known in advance.  

Every node has one buffer for incoming messages and one set of 
double buffers for outgoing messages. Each double buffer is 
composed of one queue for low priority outgoing messages and one 
for high priority outgoing messages. The number of double buffers 
is equal to the number of neighbors of this node (Figure 1).  

There are two types of network packets, data and overhead 
packets, in the system.  
Data packets are for exchanging data between different nodes. On 
the other hand, overhead messages are agents that travel within 
the network and have the responsibility of updating the routing 
tables. 

There are two types of overhead messages (that is, mobile 
agents), forward ants and backward ants. The priority of forward 
ants is low while the priority of back-ward ants is high. In this 
research, both incoming and outgoing messages are processes in a 
first come first served (FCFS) manner (that is, all incoming and 
outgoing queues are FIFO). The length of all queues are considered 
unlimited and hence there will be no queue overflow. 
  When a node receives a packet from its neighbor, the packet is 
first stored in the input buffer. Packets in the input  buffer  are  
taken  one  at  a  time  and  the  routing process will designate 
which output buffer should this packet be sent.  
 To be able to do the routing process AntNet needs. To use two 
data structures that are explained in the followings. 
 
 
AntNet data structures 
 
Mobile agents communicate with each other in an indirect form 
using two data structures Tk and Mk, in each node k. 

Routing table Tk is organized as a matrix of probabilities as shown 
in Figure 2. The rows  of  this  matrix  are  destination  nodes  

 
 
 
 
and the columns are the neighbors of this node. For each 
destination d and every neighbor node n, Tk stores a probability 

value ndp  that is the probability of choosing n as the next hop. 
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For each destination d, table ),,( 2
dddk WM σµ  contains a mov-

ing observation window Wd, of maximum size Wmax. Wd is used to 

compute the agents' best trip time
dbestt . The average dµ  and 

variance 
2
dσ  represent the mean and variance of the trip times 

experienced by forward ants to move from node k to destination 
node d.  

In (1) and (2) dkt →  represents the newly trip times of ants that 

come recently from node k to destination node d and the factor η 
weights the number of most recent samples that will really affect 
average and Wmax is the maximum allowed size of the observation 
window (Gianni Di Caro, 1998). 
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Di Caro and Dorigo in [Gianni Di Caro, 1998] prefer the formula (3) 
for relation between η and maximum size of moving observation 
Wmax. We explain more about it later. 
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AntNet algorithm 
 
AntNet can be described as follows (Gianni Di Caro, 1998): 
  
i.) At regular intervals, from each node s, a forward ant  

dsF →  is launched randomly to each network node d.  

ii.) The forward ants store their paths and traffic information to their 

stack dsS → , while traveling to destination nodes. 

iii.) At each node k, each forward ant chooses the next node as 
follows: 
 
a.) If all the neighboring nodes have not been visited, the next hop 
is one of the nodes that are not already visited. 
b.) The selection is based on the routing table and the size of queue 
of the neighbor using (4) and (5). 
     
    
 

 
)1(1 −+

+=′
k

nnd
nd N

lp
p

α
α

                                             (4) 
    

�
=′

′

−=
kN

n
n

n
n

q

q
l

1

1

                                                                (5) 



 
 

 

Saffariaman et al. 161 
 
 
 

 
 
Figure 2. The data structures of node k with neighbors x, y and z and a network with N nodes: routing table 
(Tk) and statistics table (Mk).  

 
 
 
Nk is the set of neighbors of the node k and ln is the availability 

factor which is calculated according to Equation (5). The nq in 

Equation (5) is the length of the queue of messages to be for-
warded from node k to its neighbor node n. The value α  in (4) 
weighs the importance of the instantaneous state of the node’s 
queue with respect to the probability values stored in the routing 
table.  
c.) If all the  neighbors  have  been  already  visited,  then next node 
is selected with equal probability.  
iv.) If a cycle is detected, all nodes composing the cycle are popped 
from the ant’s stack.  

v.) After forward ant dsF →  is reached to node d, it produces 

backward ant sdB → . The backward ant returns to the source node 

by using the same path as the forward ant in opposite direction. 
vi.) When the backward ant receives from neighbor h to node k, it 
can update two data structure Tk and Mk of node k. 

a.) The mean dµ  and variance 
2
dσ  entries of the local model of 

traffic Mk are modified using (1) and (2). The best value 
dbestt of the 

forward ants trip time from node k to the destination d stored in the 
moving observation window Wd is also updated by the backward 

ant. If the newly observed forward ant’s trip time dkt →  is less than  

dbestt , then 
dbestt  is replaced by dkt → . 

b.) The routing table Tk is updated by increasing the probability 

dhp ′  (the probability of choosing neighbor h when destination is 

d ′ ). The probability  dhp ′   of the selected 

neighbor is increased by the reinforcement value r as shown in (6). 
The r value will be computed later. 

     )1( dhdhdh prpp ′′′ −+←
                                          (6) 

 

The probabilities dhp ′  of other neighbors of node n  for destination 

d ′  are decreased by negative reinforcement values computed in 
(7): 
 

      
kdhdhdh Nnhnrppp ∈≠∀−← ′′′ ,,

                         (7) 
 
Hence, in AntNet, every path found by the forward ants receives a 
positive reinforcement value. 
c.) The reinforcement value r used in Equations (6) and (7) is a 
dimensionless value in the range of (0, 1) and it is computed as (8): 
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In (8), the reinforcement value r is adjusted using the squash 

function s(x) discussed later in Equations (11) and (12), dkt →  is 

the newly observed forward ant’s trip time from node k to d and 

dbestt  is the best trip time experienced by the forward ants traveling 

to d over the observation window Wd. The value of supt  is 

computed as (9): 
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Where γ  is the confidence level. Equation (9) represent the upper 

limit of confidence interval for the mean dµ
, assuming that the 

mean dµ
 and the variance 

2
dσ

 are estimated over Wmax samples 
(Leon-Garcia, 1994). 
In Equation (8), c1 and c2 are real values in the interval (0, 1) so that 
c1 + c2=1. On the other hand, it is suggested that c1 be greater than 
c2, because the first term of (8) is more important than second term 
and γ  in Equation (9) is confidence level (Gianni Di Caro, 1998).  

For more information see Kaeilbling (1996) and our earlier work 
(Saffari-Aman, 2008). 
 
 
THE EFFECT OF PARAMETERS ON ANTNET PERFORMANCE 
 
We have focused on some principal parameters that they 
have high effectiveness on AntNet implementation as 
below: 
 
Inspecting AntNet complexity 
 
One of the most  important  goodness  criteria  of  every 
algorithm is its time complexity. At this part, we present 
the complexity of primary operations of a forward ant to 
travel between a source and a destination node. 

At every node along the path from source toward desti-
nation, a forward ant needs to search its stack to find the 
next hop to be chosen among the node’s neighbors. The 
worst-case complexity of searching through the stack is 
O(1), if the stack is implemented as a combination of 
linked list and an additional array or a hash table. More-
over, the complexity of (4) is O(Nk), because the value of 
probabilities is computed for every neighbor. There are 
some other computations for each ant to do. It is pushing 
the current node identifier and the current time. The com-
plexity of these operations is also O(1). Then the ant re-
fers to the queue for one of the output links with the 
complexity of O(1). If the maximum hopcount of the 
forward ant be M, in the worst-case, the forward ant 
should repeat all the above computations at everyone of 
M nodes. Thus, the worst-case complexity for a single ant 
to travel from a source to a destination node in AntNet is 
O(MNk). 

The worst-case complexity for a backward ant to travel 
from its source to its destination is also O(MNk) to 
compute three operations at every node along its path. At 
first, it needs to pop the stack to know the next hop to 
travel. The pop operation in the stack is O(1). Second, the 
backward ant must enter the one of output queues with 
complexity O(1). Third, it should update routing table for 
every neighbor Nk for destination d which is O(Nk). 
Furthermore, it has to do all computations for each M of 
the path. 

If the total number of ants (forward and backward) that 
are generated is 1>λ  and the worst-case complexity of 
single forward or  backward  ant  to  travel  from  a  given  

 
 
 
 
source to a given destination node is O(MNk), the worst-
case complexity of AntNet is )( kMNO λ . 

To compute the complexity of AntNet for finding the 
shortest path in the worst-case, suppose a forward ant 
searches for one distinct path and a forward ant or back-
ward ant pair updates only the routing tables at the source 
node for the given node. There is an equal probability of 
creating a forward ant with any one of the N-1 nodes as 
the destination. Hence, only one of N-1 forward ants is 
use to search for the shortest path between source and 
destination. Consider the number of paths between a 
source and a destination is m. The complexity of AntNet 
to search for shortest path (CAntNet) with m=mmax is CAntNet 
= O(mMNkN), where mmax is upper bound of the maximum 
number of paths between source node and destination 
node in G(N,L). The upper bound mmax on the total 
number of paths between source and destination node in 
G(N,L) is mmax = [e(N-2)!] (Mieghem, 2005 Dhillon, 2006) 
e is a constant value equal to 2.718281828459. 
 
 

Performance of AntNet 
 

The computation of time jiT →  of a network packet (data 

packet/overhead packet) to travel from node i to node j is 
given in (10). 
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In (10) iq  is length of low priority queue at the i for link 
i�j, the size of the packet is also SizePacket, the capacity 
of link i�j is jiC →  and jiD →  is transmission time of link 

i�j. The part of jiPacket CSize →/  is the transmission time 

of a packet and the part of jij Cq →/  is queuing delay 

that experienced by the packet while waiting at  node i for 
the link i�j. 

For implementing AntNet, we have used the node model 
of the network according to Figure 1. At this model the 
queuing delay in (10) and parameter ln in (4) is computed 
by the number of packets waiting in the low priority queue 
for a specified link (in FIFO order). Assume that every 
node is able to remove one packet from its high and low 
priority queue in the output buffer (for any output link) at a 
rate of 0.01 ms. Hence, we assume it negligible, in our 
simulations. 
 
 

RESULTS 
 

To inspect the AntNet implementation parameters, we 
compute some of criteria for our network model such as 
End-to-End delay, the average  hopcount of the paths that 



 
 

 

 
 
 
 

 
 
Figure 3. The 16-node network simulation model. 
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Figure 4. The effect of ant generation rate on End-to-End delay. 
 
 
 

the data packets use to travel between source and desti-
nation node, receiving throughput and overhead in 16 
nodes network as shown in Figure 3.  

The simulation is divided in two parts, training period 
and testing period. Ant packets generate along the train-
ing period, however both overhead packets and data 
packets generate along the test period. The total time of 
our simulations is 25 s. We have considered 15 s for 
training period. Node 0 is the source node and node 9 is 
the destination node. The size of data packets is 512 bits 
and bandwidth of links varies from 1.5 to 6 MBps. We 
have also tried the AntNet with the several of ant gene-
ration rate.  

Note that, the AntNet algorithm implementation is dyna-
mic, that is, links can be broken and reconnected during 
the simulation. 
 
 

The effect of ant generation rate  
 
To study ant generation rate of AntNet algorithm, we used 
different rates in our simulations, like 0.15, 0.5,  1,  1.5,  2  
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The effect of Ant generation rate and Overhead
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Figure 5. The effect of ant generation rate on routing 
overhead. 

 
 
 

The Ant generation rate and Ant loss  
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Figure 6. The effect of ant generation rate on ant loss. 

 
 
 
(for example, 0.15 means that every 0.15 s one ant is 
generated).  

The average of End-to-End delay shows convergence 
rate of algorithm. According Figure 4 when we decrease 
ant generation rate, total delay is improved. However the 
improvement is not very notable. 
It is clear that if we decrease the number of agents  crea- 
ted, a higher bandwidth is left for transmitting actual data. 

According to Figure 5, when ant generation rate is de-
creased the routing overhead is decreased, too. The 
other problem is finding the optimal rate of generating 
agents, in order for the agents not to be lost. In Figure 6 
we have shown the effect of the ant generation rate on 
ant generation rate, the ant loss rate decreases at the 
same rate. 

One more question is the effect of ant generation rate 
on packet loss ratio. In Figure 7, we have shown packet 
loss rate versus ant generation rate. 

In the following, the effect of ant generation rate is 
studied on the number of hops from source to destination. 
It is desirable to reduce the number of hops as  there  are  
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The effect of ant generation rate on packet loss rate
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Figure 7. The effect of ant generation rate on packet loss 
rate. 

 
 
 

The effect of ant generation rate on hopcount 
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Figure 8. The effect of the ant generation rate on hopcount. 

 
 
 
some computations to perform for each hop. Figure 8 
shows the results of simulation for this purpose. Although, 
the figure doesn't show a large difference in hopcounts 
between lower number and higher number of ant gene-
ration rates, but as the number of packets are high the 
total hopcount difference becomes noticeable. size of the 
network,  AntNet  performance  decrease,  because the 
ants have to travel longer distances. As a result of tra-
veling longer distances, ant's carrying information is out-
dated and there is a higher possibility for every ant to be 
lost. Our simulation results showed that when we 
increase the size of network from N = 16 to N = 25, 
almost all Quality of Service (QoS) criteria is declined. On 
the other hand, as Figure 9 shows, increasing the band-
width of links decreases the End-to-End delay and in-
creases the convergence rate. 

According to Figure 10, by increasing the bandwidth the 
receiving   throughput   is   increased.   Of   course,  this  

 
 
 
 

The effect of Bandwidth on End-to-End delay 
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Figure 9. The effect of bandwidth on End-to-End delay. 

 
 
 

The effect of Bandwidth on receiving throughput 
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Figure 10. The effect of bandwidth on receiving throughput. 

 
 
 
increase in throughput continues up to a certain value of 
the bandwidth. Further increases in the bandwidth do not 
have a positive effect on the throughput.  
 
 
The effect of bandwidth and number of nodes 
 
AntNet has a scalability problem, that is, by  increasing  
the size of the network, AntNet performance decrease, 
because the ants have to travel longer distances. As a 
result of traveling longer distances, ant's carrying infor-
mation is outdated and there is a higher possibility for 
every ant to be lost. Our simulation results showed that 
when we increase the size of network from N=16 to N=25, 
almost all Quality of Service (QoS) criteria is declined. On 
the other hand, as Fig. 9 shows, increasing the bandwidth 
of links decreases the End-to-End delay and increases 
the convergence rate. 

According to Figure 10, by increasing the bandwidth the 
receiving throughput is increased. Of course, this 
increase in throughput continues up to a certain value of 
the bandwidth. Further increases in the bandwidth do not 
have a positive effect on the throughput. 

Note that by increasing bandwidths both throughput and 



 
 

 

 
 
 
 

The effect of Bandwidth on ant-processing overhead 
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Figure 11. The effect of bandwidth on ant-processing overhead. 

 
 

delay are improved. However, this causes fewer ants to 
be lost and hence increases the overall ant-processing 
overhead (Figure 11). 
 
 

The effect of squash function 
 

As (Gianni Di Caro, 1998) suggests, all paths  are  disco- 
vered by forward ants that receive the positive reinforce-
ment value r. r is computing by using Equation (8) and it 
is then adjusted using the squash function s(x) given in 
[11]. The squash function s(x) is defined in AntNet to be 
used in computing the r value by using Equation (12). The 
purpose of function s(x) is to decrease the smaller values 
of reinforcement r in order to lessen its effect  on  routing  
table update  and  increase  the  larger values of r in order 
to increase its effect on the routing table update (Gianni 
Di Caro, 1998).  
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The coefficient 
kN

a  identifies the dependence of squash 

function s(x) on the number of neighbors Nk of the node k. 
Figure 12 shows the effect of the coefficient 

kN
a  on r. If 

its value is less than 1, then even low values of r 
increases based on s(x). Hence, the value of parameter a 
should be chosen such that the coefficient 

kN
a  is greater 

than 1. 
 
 

The effect of moving observation window size and η  
 
The value of Wmax should be large enough to store the trip 

Saffariaman et al. 165 
 
 
 

 
 
Figure 12. The squash function s(x) for different values of the 

coefficient  kN
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times of all forward ants generated by the node as well as 
the trip times of forward ants received. 

The parameter η is used to estimate the mean dµ  and 

the variance 2
dσ  by using the exponential model as 

shown in (1) and (2). This parameter represents how 
many of the previous forward ants trip times have 
noticeable effect on the mean and average value. 
Furthermore, the value of parameter η is chosen to be 
very small say η = 0.002 so that large number of sample 
trip times of forward ants are used to calculate the mean 
and variance in (1) and (2). In our experiments Wmax took 
the values 10, 20, 50, 300, 500, and 700.  

As mentioned above, Di Caro and Dorigo in (Gianni Di 
Caro, 1998) presented the Equation (3) for the relation 
between parameters η and the maximum size of moving 
observation window, Wmax. Our simulation results showed 
that this formula can be interpreted with respect to the 
number of possible different paths in the network. In 
addition, our simulation results show that with a small 
moving observation window, even if ant generation rate 
increases, the performance of the algorithm remains the 
same or may decrease. However, the AntNet algorithm is 
robust to changes on above mentioned parameters and 
other effecting parameters.  

Detailed study of Figures 4 - 12, reveals that changing 
one specific parameter may not lead to an improvement 
in performance unless other parameters are also modi-
fied, accordingly. 
 
 
Conclusion 
 
AntNet is recently used as a method for solving optimi-
zation problems. In fact, the coupling of  various  parame- 
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ters is the inherent cause of complexity in the AntNet 
algorithm and changing one specified parameter may not 
lead to an improvement in performance until other para-
meters are also modified.  

Based of our simulation, the performance of AntNet de-
grades as the network size is increased. The AntNet algo-
rithm is robust against changes during the training and 
converges to a good solution even at low ant generation 
rates. The performance of the algorithm can be improved 
by using a large value of the parameter a in the squash 
function s(x).  

The complexity of AntNet algorithm can be reduced by 
a number of methods, but this generally comes at the ex-
pense of AntNet performance. 
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