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A dynamical study of a bubbly flows in a transversal varying section duct (Venturi), is modeled by the 
use of the mass and momentum phases equations, which are coupled with the Rayleigh-Plesset 
equation of the bubbles dynamics. The effects of the throat dimension and the upstream void fraction 
on flow parameters are investigated. The numerical resolution of the previous equations set let us 
found that the characteristics of the flow change dramatically with upstream void fraction. Two different 
flow regimes are obtained: a quasi-steady and a quasi-unsteady regimes. The former is characterized 
by a large spatial fluctuations downstream of the throat, which are induced by the pulsations of the 
cavitation bubbles. The quasi-unsteady regime corresponds to flashing flow in which occurs a 

bifurcation at the flow transition between these regimes. This transition occurs at Rc 4.3 which 

corresponds to s 4.710
-3

. An analytical expression for the critical bubble size at the flashing flow point 
is also obtained and compared with theoretical data.  
 
Key words: Venturi meter, tow-phase flow, cavitation. 

 
 
INTRODUCTION 
 
It is well known that the venturi is a robust technique for 
measuring the flow characteristics of a single-phase fluid 
for high Reynolds numbers. Multiphase flow measuring is 
generally more difficult. The density of a gas-liquid 
mixture depends upon the volume fraction of the gas, and 
the phases densities. The velocity of the gas within the 
venturi is likely to be different from that of the liquid. Over 
the two last decades, the investigations of a 
homogeneous steady-state cavitating nozzle flow, using 
spherical bubble dynamics with a polytropic thermal 
process (Wang and Brennen, 1998), have shown some 
flow instabilities illustrated by the flashing flow 
phenomenon.  

The flow model, generally used, is a nonlinear 
continuum bubbly mixture which is coupled with the 
dynamics equation of the bubbles. A three equations 
model was first proposed by van Wijngaarden (1968, 
1972), and has been used for studying steady and 
transient shock wave propagation in bubbly liquids, by 
omitting the acceleration of the mean flow. This model 
has been also considered by Wang and Brennen (1998), 
in the case of converging-diverging nozzle, with an 
upstream variable void fraction. It was observed that 
significant change of the flow characteristics depends 
strongly on the latter and a critical bubbles radius have 
been obtained. Considering the gas nucleation rate, as  a  
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source term in the mass conservation equation of the 
bubbles, Delale et al. (2003) have used the previous 
model for the same converging-diverging nozzle. They 
have concluded that the encountered flow instability can 
be stabilised by thermal damping. Several authors have 
also considered the bubble dynamics equations under an 
appropriate form to the chosen example. Among them, 
Wang and Brennen (1999) have expressed the flow 
equations in time and radial coordinate, for a bubbly 
mixture, where the shock wave have been studied for 
spherical cloud of cavitating bubbles. Besides, effects of 
the shocks on the bubbles interactions have also been 
analysed. The same Rayleigh-Plesset equation has been 
used by Gaston et al. (2001) in modelling the bubbles as 
a potential source. The stream function has been written 
in function of spatial coordinates and the source term. 
They have analysed the effect of complex interactions 
through a venturi. By introducing liquid quantity and 
motion equation in a spatial Rayleigh-Plesset dynamics 
relation, Moholkar and Pandit (2001) have obtained a 
global dynamic equation which has been resolved in a 
three steps method. In their work they have studied the 
effect of the downstream pressure, the venturi pipe ratio, 
the initial bubble size and the upstream void fraction, on 
the dynamics of the flow. The results of the simulations 
show that the bubble/bubble and bubble/flow interaction 
through the hydrodynamic of the flow has important effect 
on the behaviour of the bubble flow. Considering a one 
bubble motion in a venturi, Soubiran and Sherwood 
(2000) have obtained a dynamic equation of the flow, 
based on different acting forces. 

More recently, Ashrafizadeh and Ghassemi (2015) 
have experimentally and numerically investigate the 
effects of the geometrical parameters, such as throat 
diameter, throat length, and diffuser angle, on the mass 
flow rate, critical pressure ratio and application rang of 
small-sized cavitating venturis (CVs). The obtained 
results show that the CVs in very small size are also 
capable in controlling and regulating the mass flow rate 
while their characteristic curves are similar to those of 
ordinary CVs with larger throat sizes. Also, by decreasing 
the throat diameter of CVs, the choked mode region, the 
critical pressure and discharge coefficient decrease. By 
decreasing the diffuser angle from 15 to 5° in the 
numerical simulations, the critical pressure ratio 
increases and the discharge coefficient remains constant. 
By increasing the throat length of CVs, the critical 
pressure ratio decrease while discharge coefficient does 
not shown any changes. Also, a variable area cavitating 
venturi was designed and investigated experimentally by 
Tian et al (2014). Four sets of experiments were 
conducted to investigate the effect of the pintle stroke, 
the upstream pressure and downstream pressure as well 
as the dynamic motion of the pintle on the performance of 
the variable area cavitating venturi. The obtained results 
verify that the mass flow rate is independent of the 
downstream  pressure  when the   downstream   pressure  

 
 
 
 
ration is less about 0.8. The mass flow rate is linearly 
dependent on the pintle stroke and increases with the 
upstream pressure. The discharge coefficient is a 
function of the pintle stroke; however it is independent of 
the upstream pressure. They concluded that the variable 
area cavitating venturi can control and measure the mass 
flow rate dynamically. 

Our investigation is based on the first model (a non 
linear continuum bubbly mixture model coupled with the 
dynamic equation of the bubble), the present work 
considers a cavitating flow through a venturi. The effect 
of the throat diameter of the venturi and the limits of 
flashing flow occurring for some upstream voids fraction, 
are analysed, and a critical value of bubble radius at the 
flashing flow point is obtained.    
 
 

BASIC EQUATIONS 
 

An axisymmetric venturi with cross-sectional area A(x) is showed in 
Figure 1, where the dimensions are reported to the inlet radius a. 
The liquid is assumed to be incompressible and the relative motion 
between the liquid and the duct wall is neglected and the total 
upstream bubble population is uniform without coalescence and 
further breaks up of the bubbles in the flow. Gas and vapor 
densities are neglected in comparison to one of the liquid. The 

bubbles are assumed to have the same initial radius *
sR . Friction 

between the liquid and the duct wall is neglected and the relative 
motion between the tow phases ignored. 
Then the mixture density can be expressed in function of bubble 
popula 
tion  
 

:  Vη1ρρ L    

 

Where  t,xRπ34V
3

  is the bubble volume.  

Continuity and momentum equations of the bubbly flow (Wang 
and Brennen, 1998) are: 
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Where    33 Rπη341/Rπη34t,xα   is the bubble void 

fraction, and u(x, t) the fluid velocity. 

     2*
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*
s

*
uρ21/pt,xpt,xCp   is the fluid pressure 

coefficient, and p(x, t) the fluid pressure, ps
* the upstream fluid 

pressure, and us
* the upstream fluid velocity. The dynamics of the 

bubbles can be modeled by the Rayleigh-Plesset equation (Knapp 
et al., 1970; Daily and Hammitt, 1970; Plesset and Prosperetti, 
1977). 
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Where x/ut/Dt/D   is  the  Lagrangian  derivative, 
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Figure 1. Schematic of the venture. 

 
 
 

Table 1. Initial conditions and water characteristics . 
 

Initial parameter Water characteristics at 20°C 

*
sR =100 µm *

Lρ =1000 Kglm
3
 

*
su =10 m/s *

Eμ =0.03 Ns/m
2
  

k=1.4 *
Lμ =0.001 Ns/m

2
 

Re=33 S*=0.073 N/m 

=0.8  

We=137  
 
 
 

  2
s

*
L

*
v

*
s uρ21ppσ  the cavitation number, pv

* the partial 

pressure of vapor inside the bubble. 
*
E

*
s

*
s

*
L μRuρRe   is the 

Reynolds number, *
Eμ the effective viscosity of liquid. 

**
s

2*
s

*
L S/RuρWe   is the Weber number, S* represent the liquid 

surface tension, and *
Lρ  the liquid density.   

Equations (1), (2) and (3) constitutes a simple model of one-
dimensional two phase bubbly flow bubbly with a nonlinear bubble 
dynamics equation. 
 
 
Steady-state solutions 
 
Assuming steady-state conditions, all the partial time derivative 
terms in Equations (1) to (3) disappear. Then, Equation set (1) to 
(3) can be transformed into an ordinary differential equation set, 
with only one independent variable (x): 
  

 (1-)uA=(1-s)=constant                                                               (4) 
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The corresponding initial conditions are: 
 
R(x=0)=1,        U(x=0)=1,     Cp(x=0)=0                                         (7) 

The axial variation of the cross sectional takes the following from: 
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Where  is the dimensionless radius of the venturi throat, and x the 

distance along the axis. In the present work we assumed: =0.5, 
x1=3.0, x2=5.7, x3=6.7, x4=10.5  
 
 
RESULTS AND DISCUSSION 
 
Equation set (4 to 6) is resolved by the use of a fourth 
order Runge-Kutta scheme, with some flow conditions 
(Table 1). 
 
 
Venturi diameter throat effect  
 
Three non-dimensional diameters ventuti throat (β) 0.5, 
0.6 and 0.7 were tested numerically. Effect of the bubble 
radius evolution  is  showed  in  Figure  3  for  some  non- 
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Figure 2. Venturi sections for various values of the non-dimensional throat radius . 
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Figure 3. Bubbles radius for various values of the non-dimensional throat radius . 

 
 
 
dimensional diameters of the venturi throat (Figure 2). By 
increasing the diameters venturi throat, the bubble radius 
decrease and the bubble oscillations frequency increase.  
Fluid axial velocity and pressure distribution are drawn in 
Figures 4 and 5, for different throat diameters. It seems 
that the evolution of these parameters corresponds to the 
monophasic   case   (Figure  4).   In   the   Figure   6,   the  

axial bubble radius gradient gives a large value after the 
throat section which is due to the inertial phenomena, as 
explained in Blak (1949) work. A strongly dumping is also 
observed for the subsequent peaks. Figure 7, shows a 
part of the previous (Figure 6), corresponding to a small 
distance, where the continuity of radius gradient can be 
verified. 
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Figure 4. Fluid velocity for various values of the non-dimensional throat radius . 
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Figure 5. Fluid pressure for various values of the non-dimensional throat radius . 

 
 
 
Upstream void fraction effect 
 
Five different upstream void fractions (αs) of the order of 
10

-3
 are used in the computation to study, the effect of the 

upstream void fraction on the flow  structure  through  the 

ventuti. The case of s=0 corresponds to the 
incompressible pure liquid flow, the results are shown in 
Figures 8, 9 and 10 which correspond to the non-
dimensional bubble radius distribution, fluid velocity and 
fluid   pressure   coefficient,   respectively,   an   instability  
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Figure 6. Bubble radius gradient for various values of the non-dimensional throat radius 

. 
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Figure 7. A part of Figure 6. 

 
 
 
inception can be remarked in these figures, which is 
located just after the throat, these results confirm those of 
Wang and Brennen (1998) with no important differences. 

Figure 8 shown that the bubble size reach the 
maximum after passing the nozzle throat of the venturi 
with increase in the upstream void fraction, the  maximum 

size of the bubbles increases and bubble frequency 
oscillation decrease, this maximum size is shifted further 
downstream after it reach the critical radius (instability 
occurs), the bubbles growth without bound in the 
calculation, this instability occurs when the bubble 
reaches a critical  value,  also  the  void  fraction  growing  
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Figure 8. Axial bubble radius distribution for deferent upstream void fraction. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 10 20 30 40 50 60 70

1,0

1,2

1,4

1,6

1,8

2,0

2,2
 

s
=0

 
s
=4x10

-3

 
s
=4.7x10

-3

 
s
=4.8x10

-3

 
s
=5x10

-3

u
(x

)

x

fff 

 2.2 

 
2.0 

 
1.8 

 
1.6 

 
1.4 

 
1.2 

 
1.0 

 

16.6                        16.8                      17.0                       17.2                       17.4 
 

 
 

Figure 9. Axial fluid velocity distribution for different upstream void fractions. 

 
 
 
leads to large amplitudes of the previously drown 
parameters, an  important   remark  concerns  the  venturi 

geometry effect: in the Wang and Brennen (1998) work, 
where cavitation  in  converging-diverging  nozzle  bubbly  
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Figure 10. Fluid pressure coefficient for different upstream void fraction. 

 
 
 

flow is studied. It can be observed that instability occurs 

for an upstream void fraction s3,045.10
-6

, which 

corresponds to a critical bubble radius rc51. whereas, for 
our geometry (Figure 1), the same phenomenon occurs 

for s 4,7.10
-3

, with rc4,3. This difference is due to the 
throat nozzle geometry. An other difference between 
these geometry’s concerns the numerical implementation 
in the first case (Wang and Brennen, 1998) a variable 
space step is required, contrarily to the second case 
where a constant and relatively large space step is 
sufficient in the practice rc correspond the flashing flow 
inception, which is illustrated by an instability of the 
parameters flow analytical expression for rc is obtained by 

Wang and Brennen (1998), 
3/1

cc )α2/σ(R  , where c 

is the upstream void fraction at which flashing flow 
occurs. 

The fluid velocity is illustrates in Figure 9. The presence 
of the bubble in the upstream flow results in the 
downstream fluctuations of the flow. With increase the 
upstream void fraction, the amplitude of this velocity 
fluctuations downstream increase and its frequency 
oscillation decrease. However, as a, increases to a 
critical value of the upstream void fraction, the flashing 
flow occurs, the velocity increases dramatically and the 
flow becomes unstable. Due to the Bernoulli effects, the 
fluid pressure coefficient varies inversely with the fluid 
velocity (Figure 10). Figure 11 illustrates the Bubble 
radius gradient in the flow for different upstream void 

fraction. Due to the inertial phenomena, the bubble radius 
gradient becomes a large value after the throat section of 
the venturi and a strongly dumping is also observed for 
the subsequent peaks. These peaks are reduced and 
amortized far further downstream flow. 
 
 

CONCLUSION 
 

A steady state equation set is considered for a bubbly 
two phase flow across a venturi. We have shown the 
effect of throat diameter and upstream void fraction on 
the characteristics parameters flow evolution. In the 
obtained result, we found that the upstream void fraction 
strongly affect the structure of the flow. Two different flow 
regimes are obtained: quasi-steady and quasi-unsteady 
regimes, where the transition between them is illustrated 
by a flashing flow inception. The latter phenomenon 

occurs at Rc 4.3 which corresponds to s 4.710
-3

. This 
value is compared with the case of converging-diverging 
nozzle which indicates that the converging-diverging 
nozzle presents more stability than the venturi. This 
analytical result is numerically tested for a venturi. Also 
we have shown the inflexion point position and the 
corresponding bubble radius and void fraction. 
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Figure 11. Bubble radius gradient for different upstream void fraction. 
 
 
 

Nomenclature 
 

A: dimensionless cross-sectional area of the Venturi, 
*
s

* AA , A*: cross-sectional area of the Venturi, *
sA  : 

upstream cross-sectional area of the Venturi, Cp: fluid 

pressure coefficient,   2*
s

*
L

*
s

* uρ21/pp  , R: dimensionless 

bubble radius, *
s

* RR , Rc: dimensionless critical bubble 

radius at which flashing flow occurs, *
sR : upstream 

bubble radius, Re: Reynolds number, *
E

*
s

*
s

*
L μRuρ , S*:       

surface tension of the liquid, We: Weber number, 
**

s
2*

s
*
L S/Ruρ , k:  polytropic index for the gas inside the 

bubbles, 
*

p  : fluid pressure, *
sp :upstream pressure, *

vp : 

vapor pressure, T: dimensionless time, *
s

*
s

* Rut  , t*: time, 

u: dimensionless fluid velocity, *
s

* uu ,  u*:  fluid velocity, 

*
su : upstream fluid velocity, V:   volume of the bubble, 

3Rπ34V  , x: dimensionless Eulerian coordinate, 

*
s

* Rx , x*: Eulerian coordinate. 

 
Greek Letters 
 

: void fraction of the bubbly fluid, c: upstream void 

fraction at which flashing occurs, s :    upstream void 

fraction, β : dimensionless radius of the Venturi throat, η : 

dimensionless bubble population per unit liquid volume, 
3*

s
*Rη ,  *η  : bubble population per unit liquid volume, γ : 

ratio of specific heats of the gas inside the bubbles, *
Eμ :   

effective dynamic viscosity of the liquid, :dimensionless 

fluid density, *
Lρ :  density of the liquid, σ :  cavitation 

number,   2
s

*
L

*
v

*
s uρ21pp   . 
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