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In this article, plane wave propagation, in a rotating perfectly electrically conducting unbounded 
transversely isotropic mediums in the presence of initially applied uniform magnetic field is studied. A 
general dispersion relation with complex coefficients is obtained for magneto-thermo-elastic waves. 
Axis of rotation, axis of symmetry and propagation of waves are chosen along z-axis. Four waves 
propagate in the medium when body is rotating about axis of symmetry. Two of them are elastic waves 
which depend on the initially applied magnetic field and the frequency of rotation. Remaining two are 
thermal waves which are independent of magnetic field and rotation. Numerical results for magnesium 
as a model material are presented. 
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INTRODUCTION 
 
Elastic theories under the affect of heat have created 
interest in the last three decades. Theories involving finite 
speed of thermal signals are known as generalized 
theories, which involve hyperbolic type instead of 
parabolic type heat transport equation. Among the 
generalized theories, other two important models are by 
Lord and Shulman (1967) and Green and Lindsay (1972). 
These generalized theories are considered to be more 
realistic than the conventional theories. 

The theories by Green and Naghdi (1991, 1992, 1993) 
give sufficient development in basic equations which 
allows treatment of much wider class of heat flow 

problems labeled as , andG N . When these heat 

equations are linearized, the transport equation 

of NG is the same as the classical heat equation, 

where  G N and   admit   propagation   of  thermal  
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signals of finite speed (Green and Naghdi, 1993). An 

important feature of NG  is that, it accommodates 

dissipation of thermal energy. Problems related the 
mentioned theories have been investigated by many 
authors (Banik et al., 2007; Kar Avijit and Kanoria, 2007; 
Kar Avijit and Kanoria, 2007; Kar Avijit and Kanoria, 
2006; Mallik and Kanoria, 2006; Mallik and Kanoria, 
2007; Das and Kanoria, 2009) and (Othman et al., 2008; 
Othman and Ya Qin, 2009; Othman and Kumar, 2009) 
and references therein.  

The purpose of this article is to study the effects of 
heat, electro-magnetic and rotation on the thermo-elastic 
harmonic waves propagating through transversely 
isotropic elastic solid by using a thermo-elastic model of 

NG  (Green and Naghdi, 1993). 

 
 
FORMULATION OF THE PROBLEM 

 
In the presence of displacement current and charge 
density,  the  electromagnetic  field  is  governed  by  the  



 
 
 
 
following Maxwell’s equations (Das and Kanoria, 2009), 
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The Ohm’s law in rotating deformable continua is as 
follows,  
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The medium is an infinite homogeneous and perfectly 
electrically conducting elastic solid permeated by a 

primary magnetic field of intensity 0H  and is rotating with 

an angular velocityΩ . The equation of motion becomes: 
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Where, Hook’s law for heat conducting material is, 
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In this equation, we selected elastic coefficients (stiffness 
matrix) for selected material that is, transversely isotropic. 
The heat transport equation in the absence of heat 
source (Green and Naghdi, 1993) is: 
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*

,,0 ,iii iv iic T T U K T K T ,                    (4) 

 

Set hHH 0  and 1,0,0Ω  

where 00 ,0,0 HH . The perturbed magnetic field 

h is so small that the product of h,U,  and derivatives of 

h  can be neglected when linearizing the field equations 

(Das and Kanoria, 2009). Equating Equations 1 and 2, 
implies, 
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By applying the value of H , it becomes: 
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By using Equation 1, 
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Implies that, 
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Where 

e

H

1
, representing the magnetic viscosity 

(Das and Kanoria, 2009). For perfectly conducting 

material  H  approaches to zero, that implies, 
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From Equation 3, for 1i  
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Equation 8 implies that, 
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H
V is the Alf'ven wave velocity 

(Alfven, 1942). Above equation  can  also  be  written  as, 
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representing ratio between the velocity components of 
the wave in transversely isotropic medium, and 
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is the coefficient representing the affect of 

external magnetic field. The non-dimensional 
transformation is, 
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Where, is dimensionless time, l and
0t are some 

standard length and time respectively, k  is the thermal 

diffusivity, 0k is the non thermal diffusivity. Equation 9 

becomes: 
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and 
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SOLUTION OF THE PROBLEM 
 
Consider the plane wave solution of the form: 
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Where, k  is the wave number, is representing the 

angular frequency of the wave and c
k

, is the wave 

speed. Equations 10 become: 
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and 
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heat equation is represented as,
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For non trivial solution of the equations we have,  
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where, 
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For simplicity choose the propagation vector along 3x  

axis that is, 0,0,1n , the dispersion relation of 

Equation 12 can be converted to the following form: 
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The dispersion relation has two factors, 1

st
 one depends 

on electro-magnetic field, and frequency of rotation of the 
medium and 2

nd
 factor of the dispersion relation is totally 

representing heat affect.  
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This gives two different values for velocity of the wave. 
The values of these velocities are depending on the 
strength of magnetic field and frequency of rotation. 
 
 
PRACTICAL APPLICATION 
 
For particular case, let us consider magnesium as a 
model material, the physical data for magnesium is as 
follows (Mallik and Kanoria, 2007): 

 
3 10 10 10

3 2 2 211 12 13

10 10
2 233 44

1.74 10 , 5.974 10 , 2.624 10 , 2.17 10

6.17 10 1.510 10

kg N N NC C C
m m m m

N NC C
m m

 
where magnetic field is represented by the following 

relation as, HxB m10 , where me x10 is 

the magnetic permeability, mx is representing the 

constant for magnetic susceptibility whose value depends 

on the nature of the material, 0 is the free space 

magnetic permeability. For magnesium mx  is 

52.3 10 and 0 is 
17104 Hm  (hyperphysics.phy-

astr.gsu.edu/hbase/tables/magprop.html.; 
www.magnesium.com/w3/data-
bank/index.php?mgco=153) gives relative permeability 
equal to 1. Figures 1 and 2 show velocity verses 
frequency of rotation for different intensity of magnetic 
fields 

In both Figures 1 and 2, velocity (c) is taken along 
vertical coordinate and rotation is stretched along 
horizontal axis, and different values of magnetic field are 
shown. 

From Equation 13, 
 

4 4 2 2 2 2 3

0 01 0T T Ti k ic k k i c k   (15) 

 

This is a quadratic equation in 
2k  having two roots, 

which shows existence of two thermal waves. Figures 3 
and 4 give for one wave (Figures 5 and 6 for 2

nd
 wave) 

and are representing relation Tc and c  is representing 

velocity of thermal wave propagation through the 
medium, for different values of diffusivity and coupling 
constant, respectively. 

In both figures, velocity (c) is taken along vertical 
coordinate and thermal velocity (cT) is stretched along 
horizontal axis 
 
 
CONCLUSION 
 
Figures 1 and 2 show the effect of rotational frequency on 
velocity of waves for different fixed value of initially 
applied magnetic field. Velocity of one wave increases 
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Figure 1. Relation between wave velocity and rotation (a) for different 

values of H0.  ( =1).   
 
 
 

 

 
 
Figure 2. Relation between wave velocity and rotation (a) for different values of 

H0. ( =1) 

 
 
 
exponentially with the increase in rotational and 

approaches to infinity when 0 0 1( ) 1.4l t C . In this 

small range, magnetic field is having increasing effect, 

but when 0 0 1( ) 1.4l t C behavior of velocity against 

rotation is opposite that is, when rotation increases, the 
velocity of the wave decreases, effect of magnetic field 

also decrease the velocity of wave propagating. Velocity 
of Figure 2 wave decreases with the increase of rotation 
and initially applied magnetic field is having increasing 
effect on this wave. 

From equations, it can be seen that there are two types 
of waves which appear in the medium and are 
independent of initially applied magnetic field. These 
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Figure 3. Relation between thermal velocity and velocity of wave, for different 

values of coupling factor T , where diffusivity is kept constant that is, 
0k =2 

( =1). 

  
 
 

 

 
 

Figure 4. Relation between cT and velocity of wave (c), for different values of 

thermal diffusivity 0k while coupling constant is kept fixed T =2 ( =1). 

 
 
 
velocities are depending on thermal factors present in 
equations. Graphical representations of these velocities 
against thermal factors that is, diffusivity and coupling 
constant are shown in Figures 3 and 4. In Figure 3, 

diffusivity constant 0k is kept constant and we studied the 

variation in wave velocity against thermal velocity (cT). It 
can be observed from Figure 3 that for some initial values 
of thermal velocity, wave velocity is inversely proportional 
to cT, and this range of small initial value is depending on 

value of coupling constant, for greater value of coupling 
constant the range of this relation between velocities is 
greater. For higher values of thermal velocity all relation 
are reversed that is, wave velocity and thermal velocity 
are directly proportional to each other and coupling 
constant is having decreasing effect on wave velocity 
against thermal velocity. Same type of relation is shown 
in Figure 4, but coupling constant is kept constant and 
relation is studied for different values of thermal 
coefficient. When diffusivity is neglected that is, the case  
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Figure 5. Changes in velocity (c-along Y axis) against thermal velocity (cT-along X-

axis) for different values of coupling factor T with 
0 2k  ( =1).  

 
 
 

 

 
 
Figure 6. Changes in velocity (c-along Y axis) against thermal velocity (cT-along 

X-axis) for different values of coupling factor 0k with 2T
 ( =1). 

 
 
 
of energy dissipation, it can be observed that energy 
dissipation totally change the nature of curve. Diffusivity 
is having positive effect on elastic wave velocity against 
thermal wave velocity. For higher value of thermal 
velocity, elasticity wave velocity become independent of 

diffusivity that is, all curves move with same result. 
Second velocity depending on thermal properties is 
shown in Figures 5 and 6. These Figures 5 and 6 are 
having dual type nature for diffusivity and thermal 
coupling constant. For simplicity, we  have  fixed  angular  



 
 
 
 

frequency equal to unity that is, 1 . 

 
Nomenclature 
 

U , Displacement vector;

  

, Electric conductivity 

of the medium; 

T , Small temperature 
increase above the reference 

temperature 
0T ; 

vc , Specific heat of the 

medium at constant 
strain; 

H , Total magnetic field vector 
at any time; 

B , Magnetic induction 
vector; 

, Thermal diffusivity; k  Wave number; 

E , Electric field vector; 
Ω , Angular velocity of 
rotating medium; 

, Constant mass density of 

the medium; 
, Thermal modulus; 

e , Magnetic permeability of 

the medium; 

t
, Coefficient of linear 

thermal expansion; 

J , Electric current density 

vector;  
0T , Uniform reference 

temperature; 

*K , A material constant 
characteristic for the                  

           NG theory; 

Tc , Non dimensional 

finite thermal wave 
speed  

            of NG  

theory of thermo-

elasticity  

T , Thermo-elastic coupling 

constant; 

K , Thermal 
conductivity; 

ijklC , Elastic coefficients   
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