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The swell index which is the slope of the rebound curve of void ratio versus the logarithm of the 
effective pressure curve is used to estimate the consolidation settlement of over-consolidated fine 
grained soils. Because determination of swell index from oedometer tests takes a relatively long time, 
empirical equations involving index soil properties, are needed to estimate it for preliminary 
calculations and to control the validity of consolidation tests. Geotechnical engineering literature 
involves empirical equations for the estimation of compression and swell indexes. In this study the 
performance of widely used empirical equations were assessed using a database consisting of 42 test 
data. In addition to this, new empirical relationships with single and multiple dependent variables were 
developed with better estimation capability. An artificial neural network (ANN) which has two input 
variables, one hidden layer and eight hidden layer nodes was also developed to estimate swell index. It 
was concluded that the performance of the ANN is better than empirical equations. 
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INTRODUCTION 
 
The compression index (Cc) represents the slope of the 
curve of void ratio versus logarithm of effective pressure 
beyond maximum past effective stress and the swell 
index (Cs) represents the slope of the rebound curve of 
void ratio versus logarithm of effective pressure. Compre-
ssion index and swell index are used for the calculation of 
consolidation settlement of overconsolidated fine grained 
soils and they are conventionally determined by labo-
ratory odedometer tests. However, the duration of con-
slidation tests is very long compared to standard index 
tests. For this reason, it is important to estimate compres-
sion and swell indexes with reasonable accuracy for 
preliminary calculations and to control the validity of 
consolidation tests. A large number of empirical equa-
tions are present in the geotechnical literature for the 
estimation of compression index (Skempton, 1944; 
Helenelund, 1951; Cozzolino, 1961; Sowers, 1970; Wroth 
and Wood, 1978; Carrier, 1985; Nagaraj and Murthy, 
1986; Nakase et al., 1988; Bowles, 1989; Yin, 1999; 
Sridharan and Nagaraj, 2000; Giasi et al., 2003; Yoon et 
al., 2004; Ozer et al., 2008) however only two widely used 
equations are present for the estimation of swell index. 

The purpose of this study is to compare the  performances 

of widely used empirical swell index equations and to 
develop new empirical equations and a neural network 
based estimation technique for swell index by using the 
results of conventional oedometer and index test results.  
 
 
DATABASE COMPILATION 
 
In order to build the database, 42 conventional oedo-
meter tests were performed according to ASTM 2435 
(ASTM, 1996) on various undisturbed clay samples which 
were taken from various locations in Turkey. In addition 
to oedometer tests, index tests were performed on each 
sample according to relevant ASTM standards. Soil para-
meters used in the database were natural water content 
(wn), natural unit weight (γn), dry unit weight (γd), percent 
of soil passing from No. 200 sieve, percent of soil passing 
from No. 4 sieve, liquid limit (LL), plastic limit (PL), initial void 
ratio (e0), specific gravity of soil particles (Gs), saturation 
ratio (Sr), compression index (Cc) and swell index (Cs). 

In order to test and obtain an empirical equation which 
is valid for all clay soils, the database should include a 
wide range of adequate data. In order to assess the  ade-  
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Table 1. Descriptive statistics of variables used in the database. 
 

Variable Minimum Maximum Mean Standard deviation 
wn (%) 15.1 62.0 31.2 10.6 
γn (t/m3) 1.705 2.167 1.936 0.124 
γd (t/m3) 1.105 1.856 1.489 0.197 
No. 200 p (%) 42.02 93.13 74.42 12.29 
No. 4 p (%) 90.98 100.0 97.57 2.62 
LL (%) 23.90 102.6 56.72 18.96 
PL (%) 0 (N.P) 45.30 27.15 8.68 
PI (%) 0 (N.P) 69.55 29.02 13.43 
e0 0.497 1.780 0.930 0.297 
Gs 2.560 2.740 2.641 0.046 
Sr (%) 59.5 100.0 86.2 10.3 
Cc 0.0922 0.5671 0.2189 0.0929 
Cs 0.0147 0.1294 0.0459 0.0246 
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Figure 1. Histogram of swell index values. 

 
 
 
quacy of the database, descriptive statistics of each data 
set present in the database were determined. Table 1 
presents the descriptive statistics of each variable and 
Figure 1 presents the histogram of the swell index. 

According to Table 1, it can be concluded that the 
database consists of a wide range of data. Therefore, this 
database can be used for the comparison of the perfor-
mance of existing empirical equations and for the deve-
lopment of new equations. 
 
 
EXPERIMENTAL DETERMINATION OF SWELL INDEX 
AND PREVIOUS EMPIRICAL STUDIES 
 
During undisturbed soil sampling, some degree of  distur- 

bance is unavoidable; this leads to a slightly remoulded 
state. Remoulded specimens will display some deviation 
on the e - log p plot as observed in the laboratory from 
the actual behavior in the field. Schmertmann (1953) 
described a procedure to obtain field (virgin) consolida-
tion curve from the laboratory consolidation curve. Figure 
2 presents this procedure. 

In this study compression index values were deter-
mined using the procedure described by Schmertmann 
(1953); therefore, they correspond to the virgin compres-
sion index and swell index values were calculated from 
the average slope of the rebound curve. 

Settlement behavior of fine grained soils is dependent 
on the relative proportion of silt and clay fractions, with 
the  highly  colloidal  clays  having  the  larger  equilibrium  
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Figure 2. Determination of virgin consolidation curve from the laboratory 
consolidation curve. 

 
 
 
void ratios; the colloidal  size  particles (< 0.001 mm)  
with greater surface area per unit mass have the ability to 
attract larger amounts of water, since liquid limits are a 
measure of the water attracted to these clay particles, 
some correlation between liquid limit and the compres-
sion index would be expected (Al-Khafaji and 
Andersland, 1992). The amount of consolidation settle-
ment of fine grained soils is dependent on the water 
absorption capacity of clay sized particles, the existing 
stress state, pre-consolidation pressure of the soil sample 
and to some extent the compressibility of soil grains. 
Therefore, any direct or indirect parameters which define 
these conditions should be related to swell index. 
Atterberg limits reflect the relative amount of clay sized 
particles and their mineralogy; initial void ratio of the soil 
is an indication of the existing stress state and the pre-
consolidation pressure; natural water content is a 
measure of the water attracted to clay particles and free 
water present within the voids; percent of soil passing 
from No. 4 and No. 200 sieves reflects the grain size 
distribution of the soil and dry unit weight may be an 
indication of the compressibility of soil grains to some 
degree. The other weight volume relationship parame-
ters, saturation ratio, specific gravity and natural unit 
weight are physically related to dry unit weight, natural 
water content and the void ratio of the soil. 

There are very large numbers of empirical equations for 
the estimation of compression index. Published regres-
sion equations generally relate compression index to one 
variable, liquid limit, natural water content, or in-situ void 
ratio, the majority of these equations are linear in form 
(Al-Khafaji and Andersland, 1992). Herrero (1983) recom-
mended multiple soil parameter models for the estimation 
of compression index. In contrast to compression index 
only two widely accepted empirical equations were deve-
loped for the estimation of swell index; these are Nagaraj 
and Murty (1985) (Equation 1) and Nakase et al. (1988) 
(Equation 2) equations. 
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In order to compare the performance of equations 
developed by Nagaraj and Murty (1985) and Nakase et 
al. (1988), root mean square error (RMSE) term was 
utilized (Equation 3). Compiled database was used to 
calculate estimated swell index values and the root mean 
square error (RMSE) term of Nagaraj and Murty (1985) 
and  Nakase  et  al.  (1988)  were  calculated.   RMSE   of 
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Figure 3. Performance comparison of Nagaraj and Murty 
(1985) and Nakase et al. (1988) equations. 

 
 
 
Nagaraj and Murty (1985) and Nakase et al. (1988) 
equations are 0.0323 and 0.0254 respectively. 
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Figure 3 displays the performance of Nagaraj and Murty 
(1985) and Nakase et al. (1988) equations. 

According to Figure 3 Nagaraj and Murty's (1985) 
equation generally overestimates the swell index.  
 
 
DEVELOPMENT OF NEW EMPIRICAL EQUATIONS 
 

Compiled database was used for the development of new 
empirical equations. In order to assess the dependency 
of parameters to each other, a correlation matrix was 
calculated. Table 2 displays the correlation matrix of 
variables. 

According to the correlation matrix there is a strong 
positive relationship between wn, LL, e0, Cc and swell 
index and there is a strong negative relationship between 
γn, γd and the swell index. In order to determine the rela-
tionship with the highest regression coefficient between 
the index parameters and swell index, regression ana-
lyses were performed between wn, LL, e0, γn, γd and swell 
index. Figures 4 to 8 present the regression equations 
between wn, LL, e0, γn, γd and swell index. 

According to Figures 4 to 8, e0, γd and wn seem to be 
good predictor variables. Therefore, for the development 
of multi-parameter equations to estimate swell index, 
multiple linear regression analysis was performed using e0, 
γd and wn. Equation 4 was determined as a result of multi 
linear  regression  analysis.  Newly  developed  equations 

 
 
 
 
and their performance indices are presented in Table 3. 
 
Cs = (-0.000319.wn) - (0.027277.γd) + (0.064019.e0) + 
0.037                                                               (4) 
 
Figure 9 presents the performance comparison of the 
newly developed empirical equations listed in Table 3. 
Table 3 and Figure 9 suggest that performances of newly 
developed equations are almost similar but Equation 2 
and multi linear equation (Equation 4) seem to have 
slightly better estimation capacity. 
 
 
ARTIFICIAL NEURAL NETWORK BASED SWELL 
INDEX ESTIMATION 
 
An artificial neural network (ANN) is a computational 
model which tries to simulate the functional aspects of 
biological neural networks. ANNs consist of connected 
artificial neurons and process information using a con-
nectionist approach. The purpose of ANNs is to set a 
relationship between model inputs and outputs by 
continuously updating connection weights according to 
inputs - outputs. They can be used to model complex 
relationships between inputs and outputs or to find 
patterns in data. Complex relationships between inputs 
and outputs can be discovered by changing model struc-
ture and connection weights. In spite of these advantages 
ANNs have an important disadvantage; they are not 
transparent as a closed form equation. Neural network 
model development involves six main stages. These are: 
determination of input and output variables, grouping of 
database as training and validating datasets, deter-
mination of network structure, optimization of connection 
weights, stopping according to a predefined criteria and 
validation of the neural network. 

In recent times, artificial neural networks (ANNs) have 
been applied to many geotechnical engineering tasks and 
have demonstrated some degree of success (Shahin et 
al., 2002). Ozer et al. (2008) were applied ANN for the 
estimation of compression index of clay bearing soils and 
they determined that ANN has a better estimation 
performance than regression equations. There are also 
applications of ANNs to civil engineering materials, for 
example Subasi (2009) applied ANN for the prediction of 
mechanical properties of cement containing class C fly 
ash. 

For the development of ANN to estimate swell index, wn 
and e0 were used as predictor variables. All input varia-
bles were scaled between 0 and 1 as recommended by 
Masters (1993). It is common practice to divide the 
available data into two subsets; a training set to construct 
the neural network model, and an independent validation 
set to estimate model performance in the deployed deve-
lopment (Twomey and Smith, 1997). Approximately85% 
of the data was used for training and 15% was used for 
validation. Hornik et al. (1989) showed that a network 
with one hidden  layer  can  approximate  any  continuous  
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Table 2. Correlation matrix of variables. 
 

 wn γγγγn γγγγd No. 200 p No. 4 p LL PL PI e0 Gs Sr Cc Cc 

wn 1.00 -0.75 -0.94 0.30 0.13 0.52 0.53 0.45 0.93 0.13 0.08 0.73 0.78 

γn -0.75 1.00 0.92 -0.19 -0.14 -0.36 -0.37 -0.31 -0.73 -0.26 -0.07 -0.69 -0.71 

γd -0.94 0.92 1.00 -0.29 -0.15 -0.48 -0.51 -0.41 -0.89 -0.18 -0.11 -0.74 -0.77 

No. 200 p 0.30 -0.19 -0.29 1.00 0.51 0.51 0.62 0.44 0.36 -0.13 -0.12 0.40 0.38 
No. 4 p 0.13 -0.14 -0.15 0.51 1.00 0.01 0.04 0.06 0.21 0.12 -0.23 0.22 0.09 
LL 0.52 -0.36 -0.48 0.51 0.01 1.00 0.83 0.95 0.58 -0.20 -0.14 0.48 0.54 
PL 0.53 -0.37 -0.51 0.62 0.04 0.83 1.00 0.67 0.59 -0.21 -0.16 0.40 0.51 
PI 0.45 -0.31 -0.41 0.44 0.06 0.95 0.67 1.00 0.51 -0.21 -0.13 0.47 0.49 

e0 0.93 -0.73 -0.89 0.36 0.21 0.58 0.59 0.51 1.00 0.16 -0.23 0.82 0.84 

Gs 0.13 -0.26 -0.18 -0.13 0.12 -0.20 -0.21 -0.21 0.16 1.00 -0.07 0.25 0.05 
Sr 0.08 -0.07 -0.11 -0.12 -0.23 -0.14 -0.16 -0.13 -0.23 -0.07 1.00 -0.23 -0.21 
Cc 0.73 -0.69 -0.74 0.40 0.22 0.48 0.40 0.47 0.82 0.25 -0.23 1.00 0.82 
Cs 0.78 -0.71 -0.77 0.38 0.09 0.54 0.51 0.49 0.84 0.05 -0.21 0.82 1.00 
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Figure 4. Regression equation between wn and Cs. 

 
 
  

Cs = 0.0007.LL + 0.0062
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Figure 5. Linear regression equation between LL and Cs. 
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Cs = 0.0121e1.3131.e0
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Figure 6. Regression equation between e0 and Cs. 

 
 
 

Cs = 9.3158e-2.8048.γn
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Figure 7. Regression equation between γn and Cs. 
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Figure 8. Regression equation between γd and Cs. 

 
 
 
Table 3. Newly developed equations and their performance 
indices.  
 

Number Equation RMSE R2 

1 nw036.0
s e0133.0C =  0.0144 0.6187 

2 0e3131.1
s e0121.0C =  0.0115 0.6501 

3 8826.2
ds 1257.0C −= γ  0.0134 0.6532 

4 
Cs = (-0.000319.wn) - 
(0.027277.γd) + 
(0.064019.e0) + 0.037 

0.0131 0.6857 

 

* Unit of γd is t/m3. 
 
 
 
function provided that sufficient connection weights are 
used; therefore, in this study a network with one hidden 
layer was used and the number of hidden layer nodes 
was increased until a successful ANN was achieved. 
Neural networks with back propagation algorithm are the 
most widely used method (Rumelhart et al., 1986). 
Therefore, in this study back propagation algorithm is 
used during training with 0.6 momentum and 0.8 learning 
rate. The training process was stopped when the average 
error of training data was below 10%. Figure 10 depicts 
the architecture of the neural network for the prediction of 
swell index and the relative connection weights.  

Figure 11 displays the laboratory determined scaled 
swell index values versus ANN estimated scaled swell 
index values of (a) training and (b) validating data. RMSE 
of the training and validation data was calculated as 
0.0113, this is lower than the RMSE of best empirical 
equations. According to RMSE of the training and vali-
dation data and the Figure 12, it can be concluded that 
the ANN’s prediction performance is better than empirical  
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Figure 9. Performance comparison of the new empirical equations 
listed on Table 3. 
 
 
 
equations. 
 
 
SUMMARY AND CONCLUSIONS 
 
In this study the performance of widely used empirical 
equations for the estimation of swell index was assessed 
using the database consisting of 42 laboratory test data. 
Results indicate that Nagaraj and Murty’s (1985) equation 
using liquid limit and specific gravity of  soil  particles  ge-  
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Figure 10. The architecture of the neural network for the prediction of swell index. 

 
 
 
generally overestimate the swell index. 

Statistical analyses performed on the compiled data-
base revealed that there is a strong positive relationship 
between wn, LL, e0, Cc and swell index and there is 
strong negative relationship between γn, γd and swell 
index. Single variable regression equations for the esti-
mation of swell index were developed using wn, LL, e0, γn, γd  

as predictor variables. Among these equations regres-
sion equation using e0 has the best estimation perfor-
mance. In addition to single variable regression equations 
one multi variable equation to estimate swell index was 
developed using multiple linear regression analysis. 

Because artificial neural networks have significant 
advan- tages over traditional regression methods such as
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Figure 11. The laboratory determined scaled swell index values versus ANN estimated scaled swell 
index values of (a) training and (b) validating data.  
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Figure 12. The laboratory determined swell index values 
versus ANN estimated swell index values of training and 
validating data.  

 
 
 
being more flexible and being able to discover more complex 
relationships with less effort, an artificial neural network 
using wn and e0 as predictor variables was developed for 
the estimation of swell index. This ANN has one hidden 
layer and eight hidden layer nodes. Back propagation 
algorithm was used to train the network. RMSE of the 
training and validation and data was calculated as 
0.0113, which is lower than the RMSE’s of regression 
equations. Therefore, it can be concluded the ANN’s pre-
diction performance is better than regression equations.  
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