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In this paper, the authors have investigated the effects components commonality and uncertainty in 
lead time, machine breakdown, etc. in a manufacturing environment. The production is characterized by 
multiple end items for multi-period and multi-stage dependent demand. The delivery performances, 
throughput of the finished products and average production time in the system are examined for 
different experimental scenarios with reference to an existing manufacturing setting. A simulation 
package, namely WITNESS is used to simulate/analyze the situations of the production lines. 
Simulation models are developed and these are verified and validated with the historical data collected 
from the company. It is observed that inclusion of common components in the manufacturing system is 
generally beneficial over the non-commonality environment, especially i) in uncertain situations, ii) for 
long procurement lead time of components and iii) when the number of parts increase in the system. 
Impacts of machine breakdown on system outcomes are higher than that of the lead time variation. The 
combination of uncertain factors has more impact on outcomes (throughput and average production 
time) compared to the individual factor. Commonality has a better control over the machine breakdown 
than lead time uncertainty. 
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INTRODUCTION 
 
In manufacturing, components commonality refers to the 
use the same components for two or more products in 
their final assemblies. Commonality is an integral element 
of the increasingly popular assemble-to-order (ATO) pro-
duction strategy where inventory is maintained for certain 
critical components – typically, involving long lead time 
and high cost – in a generic form (Mirchandani and 
Mishra, 2002). Commonality could be an approach in 
manufacturing, production and inventory management 
systems, where different components can be replaced by 
common component(s) for multiple products. Therefore, it 
can be used to simplify the management and control of 
the critical resources. Commonality thus can help 
improving the existing products’ structures or processes 
or to develop a new product-mix at an optimized cost.  

Heese and Swaminathan (2006) concluded that com- 
monality   substantially   lowers  the  costs  of  proliferated  
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product lines, mitigate the effects of product proliferation 
on product and process complexity. It reduces the cost of 
safety stock, decreases the set-up time, increases 
productivity, and improves flexibility (Zhou and 
Grubbstrom, 2004); reduces the required number of order 
(or setups) (Mirchandani and Mishra, 2002; Hillier, 2002); 
reduces risk-pooling and lead time uncertainty, improve 
the economy of scale, simplify planning, schedule and 
control process, streamlines and speeds up product 
development process (Ma et al., 2002). Further, commo-
nality facilitates quality improvement, enhances supplier 
relationship and reduces product development time 
(Mirchandani and Mishra, 2002). The commonality occurs 
in its own way in the system or can be planned for its 
preferred happening as well. 

In most literatures, two sources of commonality are 
identified - the component part commonality and the pro-
cess commonality. The formulation of the component part 
commonality is based on the mindset of counting the 
average applications per component part. It takes into 
account the product volume, quantity per operation and 
the price/cost of the component part.  The  process  com-  
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monality index incorporates such concerns as process 
flexibility, lot sizing, sequencing and scheduling common 
alarms into one analytical measurement (Jiao and Tseng, 
2000). The number and diversity of compo-nent parts and 
the corresponding processes mirror the complexity of 
product design and that of production planning and 
control. 

Multi-stage production planning is a system which 
transforms or transfer inventories through a set of 
connected stages to produce the finished goods. The 
stages represent the delivery or transformation of raw 
materials, transfer of work-in-process between production 
facilities, assembly of component parts, or the distribution 
of finished goods. The fundamental challenge of multi-
stage production is the propagation and accumulation of 
uncertainties that influences the conformity of the outputs 
(Du and Chen, 2000). The present study is concern with 
such a multistage system and simulation is chosen to 
analysis the objectives. 

A simulation model is a surrogate for experimenting 
with a real manufacturing system. It is often infeasible or 
not cost-effective to do an experiment in a real process. 
Thus, it is important for an analyst to determine whether 
the simulation model is an accurate representation of the 
system being studied. Further the model has to be 
credible; otherwise, the results may never be used in the 
decision-making process, even if the model is “valid” 
(Law and Mccomas, 1997). A few simulation models are 
used to analyze various effects of uncertain factors 
namely machine breakdown and lead time variability. 

Machine breakdown means the failure or stoppage of 
machine(s) for unknown reason(s) and a representation 
of interruption in the process (Koh and Saad, 2003). It 
wield a reduction of capacity level and delay the release 
of products or subassemblies (Wazed et al., 2008). In this 
study, the authors assumed that no alternative machines 
are available if the existing machines fail and no alter-
native routing can be executed if an order needs to be 
expedited. Lead time is composed of processing, 
inspection, waiting and transportation times.  

However, lead time may differ from early planned time 
due to one type or other uncertainties in the system. It 
may provoke either shortages or surplus in inventories 
which in turn increases backlogging or holding cost and 
thereby increases the total cost of the production (Wazed 
et al., 2008). Short manufacturing lead time is accepted 
as the central underlying factor for successfully accom-
plishing the world-class manufacturing goals such as on-
time delivery (Blackburn, 1985), quality (Schmenner, 
1991; Schonberger, 1986), flexibility (Stalk, 1988) and 
productivity (Wacker, 1987). Manufacturing lead time is 
now often used as a measure of a firm’s competitiveness.  

Under such circumstances, the authors studied the 
effects of component commonalities and two uncertain  
factors, namely machine breakdown and lead time 
variation in a multistage production system. The main 
objective of this study is  to  analyze  the  throughput  and  

 
 
 
 
average production time of the assembly lines in a 
company, located in Singapore, consisting of two pro-
ducts under commonality in a disturbed environment. 
 
 
LITERATURE REVIEW 
 
Review of the literature on manufacturing environment to 
examine its performance when disturbed by uncertainty 
has been carried out. This section discusses on past 
researches and then comments on the effectiveness of 
previous representation of such environment. 

Uncertainty refers measuring the degree of differences 
between the models and the respective real systems’ 
values or between the estimation of variables and their 
true values. An uncertainty can be affected by errors 
associated with the model itself and the uncertainties of 
the model inputs. Modern manufacturing enterprises are 
facing increasing pressure to respond to production 
dynamics caused by disruption or uncertainty (Koh and 
Saad, 2003). Machine breakdown and lead time are two 
main uncertainty factors, though there are more as 
summarized in Table 1 (Wazed et al., 2009). Sometimes 
these act as sources of other unexpected events in the 
system.  

Minifie and Davies (1990) developed a simulation 
model to study the interaction effects of demand and 
supply uncertainties. These uncertainties were modelled 
in terms of changes in lot-size, timing, planned orders 
and policy fence on several system performance 
measures, namely late deliveries, number of set-ups, 
ending inventory levels and component shortages. They 
used planned order release (POR) schedule to release 
order into the simulation model. It was concluded that the 
system performance is significantly affected when dis-
turbed by demand and supply uncertainties. However, 
the simulation model developed by them allowed partial 
order release when some required parts at lower levels 
BOM chain are available on hand. This logic violates 
MRP principle in two folds: (i) order at the upper level 
BOM cannot be released until all parts at the lower level 
BOM are available, and (ii) this order cannot be released 
early or it can be released when its release date is 
reached or at the later release date (late release). 
Besides, the component commonality feature(s) is not 
included in the analysis. 

Using a similar research methodology, Brennan and 
Gupta (1993) examined the performance of manufac-
turing environment under demand and leadtime uncer-
tainties. The effects from the use of different lot-sizing 
rules were also considered. It was concluded that these 
uncertainties could be tackled by using appropriate lot-
sizing rules. A multi-product and multi-level dependent 
demand system was developed and the production orders 
execution was controlled by POR schedule. Additional 
algorithm was coded to control order release by checking 
availability of all the required  components.  Nevertheless, 
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Table 1. Uncertainty factors found in literatures. 
 
Factor(s) of uncertainty  References 

System uncertainty (Sommer, 1981;  Miller et al., 1997; Hsu and Wang, 2001; Reynoso et 
al., 2002). 

Lead time uncertainty 
(Ould-Louly and Dolgui, 2004; Mohebbi and Choobineh, 2005; Koh and 
Gunasekaran, 2006; Brennan and Gupta, 1993; Dolgui and Ould-Louly, 
2002; Huang et al., 1982; Mayer and Nusswald, 2001). 

Environmental uncertainty, Supply uncertainty (Ho et al., 1995; Billington et al., 1983; Güllü et al., 1999). 
Operation yield uncertainty (Huang et al., 1985; Dalal and Alghalith, 2009; Kim and Gershwin, 2005). 
Interrelationship between levels (Kim and Hosni, 1998). 

Demand uncertainty 

(Bourland and Yano, 1994; Ho et al., 1995; Ho and Carter, 1996; 
Brennan and Gupta, 1993; Escudero and Kamesam, 1993; Vargas and 
Metters, 1996; Miller et al., 1997; Kira et al., 1997; Mohebbi and 
Choobineh, 2005; Grabot et al., 2005; Mula et al., 2006; Koh and 
Gunasekaran, 2006; Balakrishnan and Cheng, 2007; Mula et al., 2007; 
Anosike and Zhang, 2007; Arruda and Do Val, 2008; Ben-Daya and 
Noman, 2008; Grubbstrom, 1999; Agatz et al., 2008; Ahmed et al., 2003; 
Mukhopadhyay and Ma, 2009; Tang and Grubbström, 2002). 

Probabilistic market demand and product sales price (Lan and Lan, 2005; Mula et al., 2007; Leung et al., 2007; Dalal and 
Alghalith, 2009). 

Capacity (Mula et al., 2006; Mula et al., 2007; Kim and Hosni, 1998; Shabbir et al., 
2003). 

Resource breakdown/ uncertainty (Koh and Gunasekaran, 2006; Balakrishnan and Cheng, 2007; Arruda 
and Do Val, 2008; Xu and Li, 2008; Sanmartí et al., 1995). 

Changing product mix situation (Anosike and Zhang, 2009). 
Labor hiring, labor lay-offs (Leung et al., 2007). 
Quantity uncertainty  (Koh et al., 2002; Guide and Srivastava, 2000). 
Cost parameters (Mayer and Nusswald, 2001; Shabbir et al., 2003). 

Quality (Heese and Swaminathan, 2006; Mukhopadhyay and Ma, 2009; Kim and 
Gershwin, 2005; Mayer and Nusswald, 2001). 

 
 
 
their order release logic ignored the feasibility of parts’ 
early completion, which allowed it to order at the higher 
levels BOM chain to be released early. Similar simulation 
models have been developed by Enns (2001), Ho and 
Carter (1996) and Tito et al. (1999). The above omissions 
are the most common, made by the researchers. 

John and Sridharan (1998) examined the effects of late 
delivery of raw materials, variations in process lead-
times, interoperation (or switching) and waiting times in a 
manufacturing setting. To model such setting, they 
characterized demand by inter-arrival time rather than 
defined from the master production schedule (MPS). 
Matsuura et al. (1995) adopted the same approach to 
their demand modeling. This has resulted in the absence 
of an order release schedule to control production orders 
execution and there was no control over the release 
timing of the orders. The resource/machine failure and 
commonality issues are entirely derelict. 

Liao and Shyu (1991) first presented a probabilistic 
inventory model in which the order quantity is predeter-
mined and lead time is the unique decision variable. Ben-
Daya and Raouf (1994) extended Liao and Shyu’s (1991) 
model by considering both lead time and ordering quan-
tity as decision variables where shortages are neglected. 

Ouyang et al. (1996) generalized Ben-Daya and Raouf’s 
(1994) model by allowing for shortages with partial 
backorders. Moon and Choi (1998) and Hariga and Ben-
Daya (1999) revised the Ouyang et al. (1996) model by 
including the reorder point as one of the decision 
variables.  

Researches (Liao and Shyu, 1991; Ben-Daya and 
Raouf, 1994; Ouyang et al., 1996; Moon and Choi, 1998; 
Hariga and Ben-Daya, 1999) in this area often focused 
on the benefits of lead-time reduction where the quality-
related issues are not taken into account. Ouyang et al. 
(2007) has developed an integrated inventory model 
which jointly determines the optimal order quantity, 
reorder point, process quality, lead time and the fre-
quency of deliveries simultaneously. In these studies the 
machine breakdown and commonality related issues are 
not considered. 

Porteus (1986) and Rosenblatt and Lee (1986) are 
among the first who explicitly elaborated on the relation-
ship between quality imperfection and lot size. Keller and 
Noori (1988) extended Porteus’s (1986) work to the 
situation where the demand during lead time is proba-
bilistic and shortages are allowed. Hwang et al. (1993) 
developed/proposed multiproduct economic  lot  size  mo- 
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dels and found that setup  time  reduction  and  quality 
improvement could be achieved with a one-time initial 
investment. Hong and Hayya (1995) presented a model 
including a budget constraint and other types of 
continuous functions for quality enhancement and setup 
cost reduction. Ouyang and Chang (2000) investigated 
the impact of quality improvement on the modified lot size 
reorder point models involving variable lead time and 
partial backorders. Ouyang et al. (2002) extended 
Ouyang and Chang’s (2000) model by investigating in 
process quality improvement and setup cost reduction 
simultaneously.  

Tripathy et al. (2003) presented an EOQ model with an 
imperfect production process. They, however, assumed 
that instantaneous production, demand for the product 
exceeds supply and no backorder is allowed. The study 
observed that the unit production cost is directly related to 
process reliability and inversely related to the demand 
rate. The models developed by these authors (Porteus, 
1986; Rosenblatt and Lee, 1986; Keller and Noori, 1988; 
Hwang et al., 1993; Hong and Hayya, 1995; Ouyang and 
Chang, 2000; Ouyang et al., 2002; Tripathy et al., 2003) 
tackled quality improvement and focused on the classical 
EOQ/EPQ model. These models ignored the impact of 
lead time variation and the opportunity of component 
commonality to obtain a better control in the system. 

Zhang (1997) has studied a general multi-period, multi-
ple product, multiple component model with deterministic 
lead times to minimize the acquisition costs. His model is 
subject to product-specific order fill rates. Deterministic 
lead time is not rational. Manufacturing system simulation 
is used for multi-items and multi stage imaginary systems 
for analyzing the vendor quality and vendor lead time 
uncertainty with and without commonality (Benton and 
Krajewski, 1990). This study has overlooked the failure of 
the production system. 

Process models often use multi-stage procedures to 
conduct all or some portions of the design process when 
designing products with components commonality, plat-
forms, or product families in mind. Jiao and Tseng (1999) 
presented a detail process to establish product families 
and Germani and Mandorli (2004) proposed a procedure 
leading to self-configuring components in a product archi-
tecture. Another five-step model for designing a product 
family was presented by Farrell and Simpson (2003). Yet 
a different approach to commonalize product subsystems 
has been suggested by Qin et al. (2005). In general, pro-
duct engineering literature, tend to provide a detailed 
step-by-step procedure on how to proceed when 
designing modular products and products with common 
components (Kamrani and Salhieh, 2002; Ulrich and 
Eppinger, 2000). Nevertheless, uncertainties issues are 
not addressed in the descriptions. 

Linking both product and process requirements, Jiao et 
al. (2000) proposed a data structure that integrates the 
bill-of-materials with the bill-of-operations. Jiao and Tseng 
(2000)   developed   a   process  commonality  index  that  

 
 
 
 
incorporates concerns like process flexibility, lot sizing 
and scheduling into their measurement instruments. 
Balakrishnan and Brown (1996) viewed ‘commonality 
across products as shared set of processing steps from 
ingot casting to some intermediate hot or cold forming 
step’ in their work. Heese and Swaminathan (2006) have 
analyzed a stylized model of a manufacturer who designs 
a production line consisting of two products. These are 
sold in two market segments with different valuations of 
quality. They investigated such circumstances that sup-
port component sharing as a profitable strategy and more 
specifically, the components that are the best candidates 
for commonality.  

Lin et al. (2006) have setup a multi-period model of 
component commonality with lead time. They analyzed 
the quantitative relationship between lead time and the 
inventory level of common component. Nonas (2007) has 
considered the problem of finding the optimal inventory 
level for components in an assembly system where 
multiple products share the common components in 
presence of a random demand pattern. Jans et al. (2008) 
have proposed a mixed integer nonlinear optimization 
model to find the optimal commonality decision in an 
industrial production-marketing coordination problem. In 
these circumstances, although machine uprightness has 
paramount importance, but its maintenance or breakdown 
issue is not considered. 

None of the earlier studies have considered the 
components commonality in a production system being 
affected by machine breakdown and lead time variations. 
Moreover, most of the previous models were not tested in 
real settings. In this research, the authors have put the 
real manufacturing facts for analyzing effects of uncertain 
factors (viz. machine breakdown and lead time 
variability), case-by-case and combined form on the 
production system with/without the inclusion of common 
components. 
 
 
The production system 
 
The XDE (a given name) is an electrical and electronic 
company located in Singapore. It is specialized in 
producing printed circuit board assembly. Two prominent 
production lines have been considered for the study. One 
production line manufactures PCBA PSU input 48V 
output 10V (line 1) and the other produces PCBA AUC28 
V2 OCXO (line 2). The main sub-components to produce 
PCBA are capacitors, transistors, thermistor, diode and 
LED.  

First of all, a number of sub-components are inserted in 
the PCBA using the chip placement machine. There are 
two chip placement machines in each production line (line 
1: cp1 and cp2; line 2:  cp3  and  cp4).  PCBAs  are  then 
passed to the solder printing machine (sp1 or sp2) for 
soldering. PCBAs are then baked using an oven (ov1 or 
ov2) which is available in  the  baking  room.  The  baking 
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Figure 1. Existing layout of the company. 

 
 
 

 
 
Figure 2. Proposed/modified layout. 

 
 
 
process takes about two hours and reduces  the  level  of 
humidity. These parts are pushed to the Quality Assu-
rance (QA) department (Ip1 or Ip2) for inspection. The 
QA staff use a fixed percentage sampling method to 
inspect the PCBAs. Inspection takes about fifteen to 
twenty minutes for one piece of PCBA. Finally, the 
finished products are packed and stored at the 
warehouse (Pc1 and 2). Figure 1 is showing the existing 
production layout of the company. Presently the company 
use the conventional production processes with known 
lead time. They exercise event trigger policy for any 
stoppage/break down of the lines. 
 
 
Experimental design 
 
This study developed a few simulation models based on  

the existing production layout (Figure 1) of the company.  
The existing layout is modified to introduce common 
components in the system. Figure 2 shows the proposed 
layout that incorporates commonality dimension. Two 
models, namely the base model (Figure 3a) and the com-
monality model (Figure 3b) are developed in WITNESS 
simulation package. The prominent uncertainty factors - 
machine breakdown and lead time variability are applied 
separately and in combined form in simulation exercises 
with/without the inclusion of common components for 
analysis. Table 2 shows the various experimental sce-
narios. 
 
 
Data generation/collection, analysis and discussion 
 
Basically, in order to  develop  the  useful  simulation  mo- 
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(a) (b)  

 
Figure 3. Simulation models -(a) Base model and (b) Commonality model. 

 
 
 

Table 2. Experimental scenarios of analysis for simulation. 
 

Scenario Machine breakdown Lead time Measured parameter 
Case-1 No No Throughput 

and 
Average production cycle 

Case -2 Yes No 
Case- 3 No Yes 
Case-4 Yes Yes 

 
 
 
dels, parameters like bill of materials  (BOM),  compo-
nents’ procurement lead times, machine setup time, 
machine cycle time, machine breakdown, machine repair 
time, safety stock inventory, production system layout 
and the lines’ buffer capacity  are the important aspects. 
The authors have collected various data and information 
through the engineers of the company in order to figure 
out the exact scenarios. The demand under deterministic 
condition is shown in Table 3.  

The Monte Carlo Simulation technique is used as 
‘demand generator’ to produce the random demand 
under the probabilistic assumption. The basis of Monte 
Carlo simulation is experimentation on the chance (or 
probabilistic) elements through random sampling. The 
authors have collected the historical demands. The 
weekly distribution and the probability of occurrence are 
calculated. Then, the probability and cumulative proba-
bility are observed and then establish an interval of 
random numbers.  

Finally generates random numbers and finds the actual 
simulating series of trials. The generated demand data for 
the same is shown in Table 4. Validation of data are per-
formed to ensure that these are for the right issue and 
useful. The recorded data were scrutinized by the 
production engineers who are familiar with the specific 
processes. 

The simulation models are validated by comparing the 
simulated output with historical data collected from the 
floor and also by face validity. The models run for 5 days 
after a warm-up period of 10 days and then the simulated  

Table 3. Demand of products from both production lines in XDE. 
 
Week 1 2 3 4 5 6 7 8 
Line 1 150 150 150 100 100 0 200 150 
Line 2 100 100 150 200 100 150 0 100 

 
 
 

Table 4. Generated probabilistic demand for the production lines 
of XDE based on Monte Carlo Simulation. 
 
Week 1 2 3 4 5 6 7 8 
Line 1 150 0 50 50 200 100 250 200 
Line 2 100 150 150 0 200 150 150 100 

 
 
 
results are generated. The run time for a 9 h shift for 5 
days is 9 × 60 × 5 min, which is same with the operation 
schedule of the lines. The warm-up period is used to 
assure the accurate result. Throughput quantity for the 
real system and simulation model are shown in Table 5. 
The authors have authenticated the models by an expert 
and authorized WITNESS trainer for face validity. As the 
variation in the throughputs between the real system and 
simulation model is not large and also the face validation 
permitted with good recommendations, hence the simula-
tion models are acceptable for analyzing the system. 
After validating the base model, various uncertainties are 
imposed to the models to investigate the case wise 
impacts. 
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Table 5. Real system and simulated weekly throughput. 
 
 Real system Simulation Model 

Line 1 Line 2 Line 1 Line 2 
Mean weekly throughput for base model 500 500 504 506 

 
 
 

 
 
 (b) 

 
 
Figure 4. (a) Throughput quantity and (b) average time for base and commonality models for 
Case-1. 

 
 
 
Figure 4 shows the (a) throughput quantity and (b) 
production cycle time respectively for both base and 
commonality models  without  machine  breakdown  and 
with 0 (zero) lead time. The ‘average time’ is the mean 
time the widget parts spent in the system. When the num-
ber of sub-components increases, the throughput quan-
tity decreases for base models and maintains a stable 
level for commonality models. This means that the 

throughput quantity of the base models is inversely 
proportional to the number of sub-components inserted 
onto PCBAs. It is much higher for the commonality 
models compared to base models, especially when the 
number of parts increases in the system. 

For all the cases the average production time follows 
an increasing trend with the number of components. It 
means that production time is directly proportional  to  the 

(a) 
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(a) 

(b) 

 
 
Figure 5. (a) Effect of machine breakdown on (a) production quantity and (b) cycle time when the 
number of sub-components is 60 and lead time is zero (Case-2). 

 
 
 
number of sub-components to be inserted in a product. 

The increase in production cycle time is higher in cases 
of base models than that of the proposed/commonality 
models. Therefore, use of common component can offer 
a stable output and tolerable production cycle time when 
the number of parts increase in the system. 

The company is presently using 60 parts in their pro-
duction system. Under the ideal condition (with no 
machine breakdown and zero lead time), the base 
models and the commonality models offer almost the 
same production quantity with little variation in their cycle 
times. Therefore, the authors have decided to use 60 
sub-components/parts for investigating the other 
scenarios. 

Figure 5 shows the effects of machine breakdown on 
(a) production quantity and (b) production cycle time for 
the base and commonality models. The production 
quantity increases and cycle time decreases sharply for 
both models when the break down interval increases. The 
present case under study shows that there are no effects 
of machine breakdown when the interval is 60 or more. 
Commonality offer least fluctuation in the production 
quantity and cycle time under the machine breakdown 
uncertainty. However, the average production quantity 
decreases and the cycle time increases in their level of 
numerical values when compared with case-1. 

Figure 6 shows the throughput quantity and average 
production time for models under non-zero lead  time  but 



Wazed et al.          1513 
 
 
 

 

 
 
 (b) 

 
 
Figure 6. (a) Throughput quantity and (b) average time for base and commonality models for Case-3 when the 
number of parts is constant at 60 units. 

 
 
 
without breakdown (Case-3) when the number of parts is 
60. The throughput decreases and cycle time increases 
for all the models. The throughput quantity is reduced 
from 513 to 428 (line 1) and 512 to 428 (line 2) for the 
base models when lead time increases from 0 to 5 h. The 
values for the same are respectively 514 to 460 and 511 
to 465 units for commonality models. It is observed that 
the throughput quantity for the commonality model is 
significantly higher compared to the base model. This 
resulted mainly due to the fact that the component 
commonality reduces the lead time uncertainty and 
supports achieving order quantity economics. 

At zero lead time, the cycle times are 272.12 (line 1) 
and 280.91 min (line 2) for the base models and 265.10 
(line 1) and 270.92 min (line 2) for commonality models. 
They reach to 302.50, 312.08, 293.12 and 297.30 min 
respectively when the lead time increases from 0 to 5 h. 
The cycle times for both models and for both production 
lines increases with the lead time but the fluctuation is 
less while the system uses common component(s). 

Figure 7 shows the throughput quantity and average 
production cycle time for models under machine break 
down and nonzero lead time for the components (case-
4). For both base and commonality models,  the  through- 

(a) 
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(a) 

(b) 

 
 
Figure 7. (a) Throughput quantity and (b) average time for base and commonality models for 
Case-4, when the number of parts is 60 units. 

 
 
 
put follows a decreasing trend and cycle time follows an 
increasing trend for the production lines when the 
components’ procurement time increases under the 
machine breakdown uncertainty. When there is no 
lateness (LT = 0) the throughputs for the base and 
commonality models are 337 and 368 for line 1 and 338 
and 370 units for line 2. In other words, the throughput for 
those models is dropped from 337 to 242 and 368 to 287 
units for line 1 and 338 to 242 and 370 to 291 units for 
line 2 when lead times increase 5 hours under the 
machine breakdown uncertainty. 
The cycle times for base and commonality models are 
301.89 and 291.40 min for line 1 and 310.50  and  295.32 
min for line 2 respectively when LT = 0. The corres-
ponding values are 308.40, 297.80, 318.35 and 302.10 

when procurement lead time increases to 5 h. The results 
of the experimental scenarios are shown in Table 6.  

Table 6 exhibits that the production volume reduces to 
at least 33 and 27% and the cycle times increases to 10 
and 8% respectively for the base and commonality 
models when the system has encountered the machine 
breakdown only. The corresponding values are 16, 9, 11 
and 9% when the system faces lead time uncertainty. 
The production quantity deceases to at least 52 and 43% 
and the cycle time increases to at least 13 and 11% for 
the base and commonality models respectively when the 
system suffers with both machine breakdown and lead 
time uncertainties. 

From Table 4 and 6, it is clear that the base models are 
unable to meet the  demand  fluctuations.  The  periphery 
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Table 6. Summary of the experimental outcomes. 
 

Test setup Production quantity (in unit) Cycle time (in min.) Remarks 
Base Model Commonality 

Model 
Base Model Commonality Model 

Line1 Line2 Line1 Line2 Line1 Line2 Line1 Line2 
Case 1 513 512 514 511 272.12 280.99 265.57 271.28 LT = 0 and NP = 60 units 
Case 2 337 338 368 370 301.96 310.63 291.38 295.12 LT = 0; NP = Constant = 60 
Case 3 428 428 460 465 302.50 312.08 293.12 297.30 LT = 5 hrs and NP = 

Constant = 60 units Case 4 242 242 287 291 308.40 318.35 297.80 302.10 
 

NP = Number of sub-component, LT = Lead time. 
 
 
 
for the production quantities in commonality models is 
somewhat satisfactory for probabilistic demand distribu-
tion. In real system, it may not be practical to produce a 
particular product to its theoritical peak level. In addition, 
there may have customers who would request for extra 
units. As such, the commonality may able to cope up with 
the changing demand and the service level and thereby 
can minimize the stock out/shortage costs. 

It is now pellucid that- 
 
i. Machine breakdown has greater impact on the produc-
tion quantity and the lead time uncertainty has more 
influence on cycle time, other hand. 
ii. Combined effects of machine breakdown and lead time 
variation have greater impacts of the measured parame-
ters than the individual factor. 
iii. Component commonality has better control on 
machine breakdown uncertainty than the lead time 
variation. 
iv. Insertion of common component(s) in the system can 
tackle the demand uncertainty as well. 
 
 
Conclusion 
 
This study developed a few simulation models for some 
production lines of a company located in Singapore pro- 
ducing electrical and electronics products. The models 
have been run for a reasonable warm-up period to assure 
the accurate results. The necessary data and information 
has been collected from the shop floor and through face-
to-face conversations. The models and data have been 
verified and validated. Intensive investigations have been 
carried out. From the experiences of the analysis and 
from the outcomes of the models, the authors would like 
to conclude that – 
 
i. Uncertainties in model parameters, such as machine 
breakdown and lead time have great impact on the 
models outcomes. It is obvious that the throughput of the 
system decreases and average production time 
increases, when any of these uncertain factors is a reality 
in the system. 

ii. The combinatorial impact of these uncertain factors is 
more prominent on the system deliveries than the 
individual factor. The analysis shows that the throughput 
is the least and the average cycle time is the highest 
when both of these uncertainties are functional in the 
production environment.  
iii. Insertion of common components in production/ manu-
facturing system is constantly beneficial over the non-
commonality environment, especially under i) uncertain 
situations, ii) for long procurement lead time of 
components and iii) when the number of sub-components 
increase in the system. The effect of the component 
commonality in the system shows the best improvements 
to the performances and this effect is more pronounced in 
the context of unexpected changes. 
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