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In recent decades the Markov Chain Monte Carlo (MCMC) method has received a considerable attention 
in the area of genetic linkage analysis. Pedigree Gibbs sampler as a MCMC method like the other 
Markov Chain-based methods of resampling faces some difficulties in application. One of the 
difficulties is setting the initial genotypes consistent with observed phenotypes in order to make the 
chain start moving to different states (sets of consistent genotypes). In this paper a new algorithm for 
setting the initial genotypes for the pedigree under analysis is proposed. The proposed algorithm 
showed faster convergence than the existing algorithm. The efficiency of the new algorithm will be 
shown through examples. This algorithm is faster and more efficient than the existing algorithms.  
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INTRODUCTION 
 
The calculation of the likelihood plays an important role in 
the analysis of genetic data. In many instances, the 
likelihood, can be written as a product of probabilities 
summed over all possible genotype configurations. The 
sum over genotypes can be computed easily along the 
lines of the Elston-Stewart algorithm (Elston and Stewart, 
1971) and its extensions (Cannings et al., 1978; Janss et 
al., 1995; Lange and Boehnke, 1983; Lange and Elston, 
1975; Stricker et al., 1995; Thomas, 1986a, 1986b). If 
exact peeling over all genotypic configurations is not 
possible, one alternative is to use MCMC procedures to 
sample genotypic configurations according to the 
posterior distribution. The Gibbs sampler (Geman and 
Geman, 1981) is an iterative procedure for drawing 
multiple dependent realizations from a distribution known 
only up to a proportionality constant. In genetics, the 
Gibbs sampler provides realizations from the distribution 

of genotypes
( )P gθ , beginning from any initial realization 

of genotypes of the pedigree that is compatible with 
phenotypes. An individual’s genotype is updated in turns 
by sampling from local conditional distributions at 

parameter valuesθ , given the observed data 
(phenotypes) and genotypes of all other members of the 

pedigree. The configuration 
( ) , 1,2,...ig i =  obtained by 

successive cycles of Gibbs sampling is a sample from a 

Markov chain with stationary distribution
( )|P g Xθ , 

where g and X denote the genotypes and phenotypes of 
the pedigree respectively. The chain has been shown to 
be irreducible since for any starting genotype 
configuration, any set of states g that has positive 
probability can be hit in a finite number of steps(Sheehan 
and Thomas 1993). The usefulness of the Gibbs is based 
on the fact that although the joint distribution of 

1 2,, ...,
k

g g g
 may be complicated, the conditional 

distribution 
( )1 1 1| ,..., , ,...,i i i kf g g g g g− +  may be 

simpler. This is the case in genetics where the conditional 
distribution depends only on a few of the other variables, 
that is, the conditional distribution of an individual in a 
pedigree given all other  members  depends  only  on  the  
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genotypes of neighbors: his parents, his spouse(s) and 
his offspring. 

One of the important problems in using Gibbs as a 
method of sampling is that of setting up the initial values 
for the chain to start from. Firstly, for complicated 
pedigrees, it is hard to set the initial genotypes 
compatible with phenotypes and consistent with other 
pedigree members. Usually for linked loci when one 
wants to set up initial genes using available methods, one 
ends up with an incompatible set of genotypes. Secondly, 
the initial values may lie in the tail of the probability 
distribution and then because of the nature of Gibbs it 
takes time for Gibbs to move to a highly probable area of 
the distribution. Some methods have been proposed for 
setting initial genotypes for the pedigree under analysis. 
Guo and Thompson (1992), in the context of choosing 
initial values, propose a method called posterior-gene-
dropping. Abraham et al. (2007) propose an improved 
technique for setting initial genotype configurations in 
blocking Gibbs sampling. In this paper we propose an 
efficient method of setting initial genes and give some 
numerical indexes for its merits over the posterior gene 
dropping. 
 
 
TERMINOLOGY AND NOTATION 
 
Consider a pedigree with n  individuals. Let g= 

( 1 2,, ...,
n

g g g
) be the vector of genotypes of the 

individuals in the pedigree, where ig  is the genotype of 

the i -th individual. Let 

ig− =
( )1 1 1| ,..., , ,...,i i i ng g g g g− + . Let X = 

( )1 2, ,..., nx x x
 

be the observed data, where ix  is the observed 

phenotype of the i -th individual, 
( )|P x g

 is the 
penetrance probability that is, the probability that an 
individual with genotype g  has phenotype x , and 

( )| ,k f mP g g g
 is the transmission probability that is, the 

probability that an individual having genotype kg given 

the parental genotypes fg
 and mg . 

 
 
Guo’s algorithm 
 
One of the important issues in using the Gibbs sampler 
as a method of sampling is setting the initial values. 
Since Gibbs samples are based on some initial state of a 
Markov chain, it is important to produce a good set of 
initial values in the sense that the chain takes a small 
number of iterations to reach its invariant distribution. 
Setting such initial values has been a time consuming job  

 
 
 
 
for researchers so far. Researchers have tried to develop 
algorithms to do this efficiently. Guo and Thompson 
(1992), in the context of choosing initial values, propose a 
method called posterior-gene-dropping. What they do is 
as follows: 
 

Let ig  and ix  be the genotype and phenotype of 
individual i  in the pedigree, then for each founder they 
draw the initial value from  
 

( ) ( ) ( )| |i i i i iP g g x P g g P x gθ θ= ∝ =
 

 
and the normalize for each i  so that the sum over g is 1. 

Here 
( )iP g gθ =

 is just the population gene frequency 
calculated based on the assumptions of linkage and 

Hardy-Weinberg equilibrium and  
( )|i iP x g

 is the 
penetrance probability which is simply set to 1 if the 
phenotype is missing. After assigning genes to founders, 

for each non-founder  i  generate ig  from the following 
probability distribution 
 

( ) ( ) ( )| , , | , |
i i f ii

i i f m i m i iP g g x g g P g g g g P x gθ θ= ∝ =
 

Where if  and im  are the parents of i  whose genotypes 
are already assigned. With linked markers, the procedure 
of posterior gene dropping may not yield consistent 
genes, because it is possible that 

( )| , 0
f ii

i mP g g g gθ = =
 for all possible g . The reason 

is that some genotypes assigned to the parents of i  may 
not be consistent with his phenotype. Guo and Thompson 
(1992) restart the procedure when there is any 
inconsistency. It is clear that for even small pedigrees the 
procedure can be time consuming. If one is dealing with 
complicated pedigrees, the procedure of setting initial 
values has a large impact on the time required for doing 
Gibbs sampling. Moreover, because this procedure picks 
one random set of genes, it is possible that the set is far 
from the center of the invariant distribution, that is, the set 
lies in the tail of the probability distribution. This also has 
some effect on the time consumed for Gibbs to arrive at 
the stationary distribution of the chain. 
 
 
The new algorithm 
 
In the proposed algorithm, the procedure of setting initial 
configuration of genes is split into setting initial genes for 
each locus separately. Since consistency may be 
determined by examining each site separately, it follows 
that   a   consistent  set  of  genes  may  be  achieved   by  



 
 
 
 
specifying genes for each site separately. An acceptable 
collection of genes for one site requires fewer iterations, 
because the number of inconsistent genes is less. In 
other words, setting genes locus by locus saves time. 
The order of individuals is also important for the setting 
procedure, because if one wants to set the genes 
simultaneously, for complicated pedigrees, the size and 
genotypes of the neighborhood of individuals affects the 
procedure in the way that a large neighborhood may 
force the procedure to produce an inconsistent genotype 
for the person of interest. So, it is proposed firstly to set 
the genes locus by locus and secondly generation by 
generation from the top to the bottom of the pedigree. 

First we assign the genes on the pedigree 
unconditional on their phenotypes, then for the first 
generation, we check whether or not the genes just 
dropped are consistent with their phenotypes. For those 
whose genotypes are consistent, in the next iteration, we 
generate from the conditional distribution of genotypes 
given phenotypes and for those inconsistent, we 
generate from the unconditional distribution and again 
check for the consistency of the genes in the current 
iteration. The procedure continues until the first 
generation’s genotypes arte set. Repeat the procedure 
for the next generation and so on up to the last 
generation. 

After setting genes for one locus, the whole process will 
be repeated for the second locus. Combining the genes 
of the two loci will result in a consistent set of genotypes 
for the pedigree. The algorithm briefly does the following: 
 
Step 1: Simulate one set of genotypes for the pedigree 
based on unconditional distribution of genotypes given 
phenotypes, that is, for founders, generate from 

( )P g
which is the population gene frequencies and for 

non-founders generate from  
 

( )| ,
f ii

i mP g g g gθ =
. 

 

Step 2: For generation j  from 1 to k , check the 
consistency of genotypes for phenotypes. If individual i ’s 
genotype is consistent: 
 
-if i  is founder, generate from 

( ) ( ) ( )| |i i i i iP g x P g P x g∝
 

 
-if i  is a non-founder, generate from  
 

( ) ( ) ( )| | , |
f ii

i i i m i iP g x P g g g P x gθ θ∝
. 

 
If individual   i ’s   genotype    is    inconsistent   with    his  
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phenotypes: 
 

-if i  is a founder, generate from 
( )P g

 
 

-if i  is a non-founder, generate from ( )| ,
f ii

i mP g g gθ .  
 
This procedure eventually ends producing a consistent 
set of genotypes for the pedigree. 
 
 
The proof of convergence for the new algorithm 
 
Without loss of generality, suppose we have consistent 

genes for individuals 1,2,..., 1i − . We prove that we can 
go to the state having the consistent gene for individuals 
1,2,..., 1,i i− . This is possible since the chain is 
irreducible (Sheehan and Thomas 1993), by ignoring the 

phenotype information of individuals , 1,...,i i n+  in the 
pedigree (relaxation of the phenotype constraints), the 
algorithm can go to all possible set of genotypes for the 
i th−  individual one or more of which is consistent. So, 
the algorithm can make every individual’s gene 
consistent after some number of iterations and therefore 
converges. 
 
 
Comparison of the Guo’s algorithm with the new 
algorithm 
 
Suppose we are dealing with two loci each having two 
alleles. Let the first locus have alleles  A  and a  and the 

second locus have alleles B  and b . The genotypes of 

the first locus will be one of , ,AA Aa aA  and aa  and 

those of the second locus will be one of , ,BB Bb bB  and 
bb . Let phenotypes corresponding to the first locus be 
“ AA  or others” and those corresponding to second locus 
be “ BB  or others” (complete penetrance). Throughout 
this section, phenotypes AA  and BB  are denoted by 1 
and “others” will be denoted by 2. Thus the phenotype of 
each person will be denoted by a pair of numbers. For 

example the individual with genotype /Aa AB  has 

phenotype (2,2), the one with genotype /AB AB has 

phenotype (1,1), the one with genotype /aB AB  will 
have phenotype (2,1) and the person with genotype 

/Ab AB  will have phenotype (1,2). For example in the 
17-member pedigree (Figure 1), if we assume that the 
disease is recessive with complete penetrance, then 
individuals 6 and 15 are sick. 

The algorithm was applied to the 17-member pedigree 
(Figure 1). The phenotypes of  the  pedigree  were  {(1,2),  
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Figure 1. 17-member pedigree used for comparison of the new algorithm with the Guo’s 
algorithm for setting initial genotypes. 

 
 
 
(2,2), (2,2), (2,2), (1,2), (2,1), (2,2), (2,2), (2,2), (2,2), 
(2,2), (1,2), (2,2), (2,2), (2,1), (2,2), (1,2)} where each pair 
corresponds to the phenotypes of one individual. The first 
element of the pair corresponds to the phenotype 
assumed for the first locus and the second element 
corresponds to the phenotype assumed for the second 
locus. Figure 2 shows the distribution of the total number 
of iterations needed to set the initial genes for both loci.  

To compare the efficiency of the new algorithm with the 
Guo’s algorithm of posterior gene dropping, both 
algorithms were run on the 17-member pedigree for 100 
runs. Note that the number of iterations for Guo’s 
algorithm has a geometric distribution (Figure 3) and the 
number of iterations for the new algorithm has roughly 
the same shape (Figure 2). Under the null hypothesis of 
no difference, the distributions of the number of iterations 
for both algorithms are the same. To compare the 

efficiencies, we compare the parameters of the two 
geometric distributions using maximum likelihood 
estimation. Let p  be the probability that an iteration 
produces a consistent set of genes. Based on 100 
different runs of both algorithms the maximum likelihood 
estimates of p  and its variance were calculated. The 

Guo’s algorithm has 0.0133p =�

 with 

ˆˆ 0.00134pσ =
and the new algorithm has 0.0056p =�

 

with ˆˆ 0.00056pσ =
. So, for the 17-member pedigree 

Guo’s algorithm was faster than the new algorithm. Next, 
wee ran both algorithms on a pedigree of size 61 (Figure 
4) for 100 different runs. Guo’s algorithm did not 
converge in any runs. So, it did not produce any 
consistent set  of  genes   (we   limited   the   number   of  
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Figure 2. Distribution of number of iterations needed to set a consistent set of genes for both loci for the 17-
member pedigree using the new algorithm. 
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Figure 3. Distribution of the number of iterations needed to set a consistent set of genes for the 17-member 
pedigree using Guo’s algorithm. 
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Figure 4. Pedigree of size 61 used for comparison of the new algorithm with Guo's algorithm. 
The pairs below the symbols represents the phenotypes of the person as explained in section.  

 
 
 
iterations to 500) but the estimation of p  and its variance 

for the new algorithm were 0.0037p =�

 and 

ˆˆ 0.00037pσ =
. 

 
 
DISCUSSION AND CONCLUSION 
 
Guo's    algorithm    works   well   for   simple   and   small  

pedigrees but it fails for large complicated pedigrees 
while the new algorithm converges for pedigrees of 
arbitrary size. The new algorithm works only for diallelic 
loci, because for multiallelic loci the reducibility of the 
chain is the potential problem. For complex pedigrees, 
although the new algorithm seems to work, its feasibility 
needs more investigations. The algorithm is implemented  
in R programming language which may be slow. If it is 
programmed in a faster programming language, it will be 
more  efficient. The  efficiency  of  this   algorithm  against  
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Abraham et al. (2007) has not been checked and we 
leave it for future studies. 
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