
Scientific Research and Essays Vol. 6(16), pp. 3418-3430, 19 August, 2011
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE11.427
ISSN 1992-2248 ©2011 Academic Journals

Full Length Research Paper

Development of interaction test suite generation
strategy with input-output mapping supports

H. Y. Ong and Kamal Z. Zamli*

School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal,
Pulau Pinang, Malaysia.

Accepted 18 July, 2011

Software testing relates to the process of finding errors/defects and/or ensuring that a particular
software of interest meets its specification. One of the key activities within software testing is on the
test case design. Over the years, many test case design strategies have been developed in the literature
including that of boundary values, equivalence partitioning, decision tables, robustness consideration
as well as cost and effect graphing. Although useful, these strategies do not sufficiently cater for bugs
due to interaction. Addressing the aforementioned issue, many researches into interaction based
strategies, called t-way strategies (where t represents interaction strength), have started to emerge in
the literature. This paper presents the development of a new t-way strategy called AURA. AURA
strategy serves as our research vehicle to investigate the usefulness of automated mapping based on
input-output relationship as well as its flexible iteration control for constructing t-way test suite.
Benchmarking results demonstrate that AURA strategy gives competitive results against most existing
strategies.

Key words: Interaction testing, t-way testing, variable strength interaction testing, input-output based
relationship interaction testing, automated mapping support.

INTRODUCTION

Software can fail in many unexpected ways (Kimoto et
al., 2008; Maity and Nayak, 2005). Thus, in order to
ensure quality and conformance to specifications, there is
a need to exhaustively test them. Yet, exhaustive testing
is practically impossible. Addressing this issue, many test
case design strategies have been developed in the
literature (for example boundary value analysis,
equivalence partitioning, decision tables and random
testing (Basili and Selby, 1987; Beer and Mohacsi, 2008;
Kuhn et al., 2004; Reid, 1997) to help sample out test
data into manageable ones. Although useful, these
strategies do not sufficiently cater for faults due to
interaction. For this reason, t-way strategies have started
to emerge. Numerous efficient t-way testing strategies
have been proposed in the past literatures (Ahmed et al.,
2011; Baowen et al., 2003; Jangbok et al., 2007; Klaib et

*Corresponding author. E-mail: eekamal@eng.usm.my,
yeh_1985@hotmail.com. Tel: 604-5996079.

al., 2008; Lei et al., 2007; Sunderam et al., 2005; Yingxia,
2009; Younis and Zamli, 2010) to generate optimized test
cases for SUT. Meanwhile, most of the reported
strategies that evolved earlier, enumerate their test cases
by covering all t-interactions of parameters involved.
These are known as uniform strength interaction testing
since t is a fixed integer value in their consideration.
However, t is rarely uniform in real world. Not all
interaction faults from typical SUT are solely constituted
by these t-interactions. In fact, a particular subset of
parameters can have a higher degree of interaction than
others which indicating failures due to the interaction of
that subset may have more significant impact to the
overall system (Myra et al., 2003a). For example,
consider a subset of components that control a safety-
critical hardware interface. A stronger coverage is
needed in that area (that is t = 3) but the rest of the
components may be sufficiently tested with pair-wise
testing (that is t = 2). Therefore, variable strength
interaction testing strategy is then been proposed to
support this concern (Myra et al., 2003a, 2003b; Zamli

and Younis, 2010; Ziyuan et al., 2008).

Variable strength interaction testing no doubt solves
some of real considerations by allowing certain subsets
to cover higher t-interactions, though; it is still insufficient
to generate test cases based on actual interactions
(Wang et al., 2007). Also, variable strength interaction
test suite is tightly coupled by its interaction strength. As
such, variable strength interaction can be regarded as the
combinations of uniform strength interaction testing in the
smaller scale. As some of t-interactions are not
responsible to actual interactions but still have to be
taken into account on test cases generation, this strategy
might include these redundant test cases. To overcome
this limitation, recent studies (Patrick and Bogdan, 2000;
Patrick et al., 2002; Wang et al., 2007; Zabil et al., 2011)
claimed that interaction testing should focus on those
input combinations that affect a program output, rather
than considering all possible input combinations.
Consequently, a general solution has been introduced:
input-output based relationship interaction testing (Patrick
and Bogdan, 2000). This strategy captures the actual
interactions for SUT based on input-output relationship
and is also capable to revert back and support both
uniform and variable strength test suite generation. For
this reason, developments of efficient input-output based
relationship interaction testing strategies are preferable.
As far as implementation is concerned, most existing
strategy implementations (Ahmed and Zamli, 2010; Lei et
al., 2007; Younis and Zamli, 2010; Yu and Kuo-Chung,
1998) generate their outputs in terms of symbolic
parameters for ease of data manipulation. This could be
straightforward but not user friendly approach because
test engineers have to manually map these symbolic
values to actual data one by one before they could
execute on them. As the test case number is
predominantly large especially in highly configurable
software systems, these could be another problematic
issue in term of time and cost consumed as well as the
accuracy of test cases (due to the potential of human
errors on manually mapping process). Hence, there is a
need for automated input-output mapping to seamlessly
translate the symbolic outputs back into the actual data
form. Apart from automated input-output mapping,
existing strategy implementations are also lacking as far
as flexibility of test suite generation is concerned. Here,
the problem of t-way test suite generation can be seen as
two sides as the same coin with optimal size and test
generation time being the sides. On one side of the coin,
when the optimality of test suite size is preferred than
generation time, a strategy need to be adaptable to
generate more optimized test suite. On the other side of
same coin, a strategy needs to be flexible enough to
generate fast test suite but in expense of optimality. In
order to address these aforementioned issues, we have
developed a non-deterministic input-output based
relationship t-way testing strategy, AURA.

AURA strategy serves as our research vehicle to

Ong and Zamli 3419

investigate the usefulness of automated mapping based
on input-output relationship as well as its flexible iteration
control for constructing t-way test suite. Benchmarking
results demonstrate that AURA strategy gives
competitive results against most existing strategies. The
rest of the paper is structured as follows: Subsequently
the mathematical background on interaction testing is
given after which the study discusses the recent related
work on input-output based relationship interaction
testing; whereas, the development of AURA strategy is
further illustrated and clarified. Then, we compare and
discuss our results with other existing strategies. Lastly,
we conclude our work.

MATHEMATICAL BACKGROUND

Mathematically, interaction testing can be abstracted to a
covering array (CA). CA is a combinatorial object that
been extensively used to generate interaction test cases
in software systems when all factors (parameters) have
equal number of levels (options or values). A covering
array, CA (N; t, k, v), is an array with N rows and k
columns that satisfies the criteria that each t-tuple occurs
at least once within these rows (Cemal et al., 2006; Myra,
2003). When N is unknown or unspecified, the notation
CA (t, k, v) can be used (that is t is interaction strength, k
is the number of factors and v is the number of options
associated with each factor). For covering array, the
value of v is the same for all k. Meanwhile, mixed-level
covering array is a generalization of covering array that
allows for different alphabet sizes for different rows. The
mixed-level covering array is denoted as MCA (N; t, k,
(v1, v2, …, vk)), an N x k array on v symbols (Bryce and

Colbourn, 2007; Yan and Jian, 2006), where ∑
=

=

k

i i
vv

1

, with the following properties:

1) Each column I (1 ≤ I ≤ k) contains only elements from a
set Si with | Si | = vi.
2) The rows of each N x t sub-array cover all t-tuples of
values from the t columns at least once.

A shorthand notation can be used to describe MCA (also
for CA, VCA and IOR) by combining the same vi’s and
representing this number as a superscript (Yan and Jian,
2006). For instance, three vi’s each with two options is
written as 2

3
. In this manner, an MCA (N; t, k, (v1, v2, …,

vk)) can also be written as an MCA (N; t, (s1
p1

, s2
p2

, …,

sr
pr

)) where ∑
=

=

r

i i
pk

1
. Variable strength covering

array, denoted as VCA (N; t, (v1, v2, …, vk), C), is an N x k
mixed level covering array, of strength t containing C, a
vector of covering arrays each of strength greater than t
and defined on a subset of the k columns. Ordering of the
columns in the representation of a VCA is important since
the columns of the covering arrays in C are listed
consecutively from left to right (Myra et al., 2003b; Ziyuan

3420 Sci. Res. Essays

et al., 2008). Unlike CA, MCA and VCA, input-output
based relationship covering array needs not generate test
cases to cover all t-way interactions but only required to
cover all actual interactions. This covering array can be
denoted as IOR (N; (v1, v2, …, vk), R), an N x k mixed
level covering array which covers interaction relationship,
R, of a typical software SUT. R is consisted of w number
of interaction coverage requirement, r, which specified
the actual interactions for that SUT and is defined as

},...,,{
21 wrrrR =

(Patrick and Bogdan, 2000; Wang et

al., 2007). Each r indicates a set of inputs (factors) that
are interacting and is constitute to a specified interaction
coverage requirement.

RELATED WORK

In the last 15 years, many t-way strategies have been
proposed in the literature including automatic efficient test
generator (AETG) (Cohen et al., 1997), pairwise
independent combinatorial testing (PICT) (Czerwonka,
2006), in parameter order (IPO) and its variants (Lei et
al., 2007; Reussner et al., 2005; Younis and Zamli, 2010;
Yu and Kuo-Chung, 1998; Yu et al., 2008), genetic
algorithm (GA) (McCaffrey, 2009a), simulated bee colony
algorithm (SBC) (McCaffrey, 2009b), simulated
annealing (SA) (Myra et al., 2003b) and ant colony
system (ACS) (Xiang et al., 2009). All aforementioned
strategies are found useful and become the pioneers in t-
way and variable strength interaction testing. Moreover, a
comprehensive survey of interaction testing has been
published by Nie and Leung (2011) recently. However, in
line of the scope of this paper, the further discussions
shall be drawn on the recent works in input-output based
relationship interaction testing. Considering the support of
input-output based relationship interaction testing, much
useful effort is also emerging. Patrick (2001) proposed
the model of input-output based relationship testing
method and gave three different test generation
algorithms (Patrick, 2001; Patrick and Bogdan, 2000;
Patrick et al., 2002) to solve the problem of test cases
generation for software with complex input-output
relationship. Their first approach implemented a brute
force algorithm to explore all possible combinations of
test to discover the correct minimal test suite (Patrick and
Bogdan, 2000). Although straightforward, brute force
algorithm tends to consume time especially involving
large test data. Next, they proposed Union algorithm
(Patrick, 2001) by generating a serial of test suite (that is,
sets of test cases) for output variables to cover the
interaction that is corresponding to their associative
inputs variables, and then taking the union of them to
obtain a final test suite.

The implementation of the Union algorithm is
straightforward with low time complexity but generally not
producing optimal test suite. Lastly, Patrick et al. (2002)
proposed Greedy algorithm. The algorithm works by

selecting an unused test case that covers the greatest
number of uncovered combinations of input values each
times until all interactions have been covered by the
selected test suite. It indeed generate a much smaller
test suite than Union algorithm, but with a bad time and
space performance since this method has to check all
test cases in a huge search space. To overcome this
constraint, Cheng et al. (2003) implemented a problem
reduction method which is based on color graph in their
later work. This method only shows significant gain in
efficiency (both time and space performance) when the
number of colors used is small relative to the number of
nodes in a complete graph. In other words, this reduction
method is merely applicable for simple relationships
between the input parameters based on their
occurrences in the output parameters. Later on, Wang et
al. (2007) analyzed and improved Union algorithm
(Patrick, 2001). They suggested that all the positions
corresponding to each “do not care” factor shall not be
assigned until a coverage requirement which include that
factor is dealt. With this perception, the improved Union
algorithm (termed as ReqOrder) generated better results
in term of test suite size reduction as compared with
previous work. Despite of this, they also implemented
input-output interaction testing by adopting in-parameter-
order strategy (Yu and Kuo-Chung, 1998), which is
known as ParaOrder (Wang et al., 2007; Ziyuan et al.,
2008). For this strategy, an initial test suite will be
constructed for a sub-system with small number of
factors. The system is then extended by adding a new
factor to get a test suite for the new sub-system. The
extending process is repeated until all factors have been
added into that system. As far as the input-output
interaction test suite size is concerned, ParaOrder gave
comparable results against Greedy algorithm and better
test suites than Union algorithm and ReqOrder.

Meanwhile, Ziyuan et al. (2008) utilized one-test-at-a-
time strategy (Cohen et al., 1997) and density concept
(Patrick et al., 2002) to generate test suite. This approach
is generally consumed longer computational time against
others (Union, ReqOrder and ParaOrder) although it
mostly produced better test suite than them. In addition,
there is an interaction testing tool; test vector generator
(TVG) (Arshem, 2009) which is capable to generate test
suite based on input-output relationship, uniform strength
and variable strength t-way coverage as well as random
manner. However, its implementation details are
unknown. While most of the strategies produce test
cases in symbolic values, automatically maps these test
cases back into actual data form is therefore another
practical feature shall be taken into account. A recent
strategy, GTWay (Zamli et al., 2011) started to address
this automated mapping need. At a glance, GTWay
implemented a preprocessing automated mapping
system by employing Parser algorithm to capture the
actual values from the fault file and map them into
symbolic representations before they can be used for t-

Figure 1. Overview of AURA strategy.

Figure 2. A typical look-up table.

way test cases generation. Upon completion of test suite
generation, GTWay remaps these symbolic data
representations into actual data values. Nevertheless,
GTWay consumed a significant portion of execution time
to read and convert the actual data from the fault file and
this lead to an overhead penalty incurred during the
preprocessing mapping process.

OVERVIEW OF AURA STRATEGY

As input-output based relationship interaction testing is more

Ong and Zamli 3421

Table 1. Symbolic notations for inputs with 5 parameters
(each 2 values).

Parameter A B C D E

Base
values

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

flexible to accommodate the actual interactions for a typical SUT,
we have opted to develop AURA strategy which supports input-
output interaction test suite generation. Moreover, the urge of
automated input-output mapping support in the sense of generating
actual value test suites encourages AURA strategy to adopt this
mapping automation feature as well. Throughout this section, the
development of AURA strategy with input-output mapping supports
will be highlighted accordingly. Basically, this strategy is composed
of three algorithms: “interaction pair generation algorithm, test suite
construction algorithm and actual data mapping algorithm”. The
overview of the AURA strategy has been summarized in Figure 1.
Referring back to Figure 1, a software tester clarifies and
summarizes the inputs (in terms of actual data form) into a look-up
table for typical software SUT. In order to generate intended test
suite, the software tester then keys in the symbolic values of inputs
into AURA strategy. Based on these inputs, ‘interaction pair
generation’ algorithm will then be triggered to generate all possible
interaction pairs, which are needed for successive operations.

After that, ‘test suite construction’ algorithm starts to construct test
suite by exploiting the interaction pairs that are previously
generated. Upon completion, the results are loaded into ‘actual data
mapping’ algorithm for generating final test suite (in actual data
form) as specified at the predefined look-up table file. Lastly, Figure
2 shows a typical look-up table that AURA strategy adopts.

Interaction pair generation algorithm

In AURA strategy, test suite generation is based on its
corresponding interaction pairs. The interaction pairs are used to
ensure the completeness of interaction coverage for specified
coverage requirements. Hence, the details on generating the
interaction pairs shall be discussed here. In order to generate
interaction pairs, AURA strategy first needs to enumerate the
corresponding parameter interactions groups. As mentioned earlier,
AURA strategy is developed to support input-output based
relationship, uniform strength and variable strength interaction
testing. Therefore, one would ask how the AURA strategy
enumerates the parameter interactions groups and also the
interaction pairs with these different kinds of considerations.
Indeed, AURA strategy generalizes and converts these parameter
interactions groups into binary representations (that is, 0 and 1 s).
After the conversion, for each parameter interactions group, 1 s (in
binary form) is representing the parameters that involved in the
parameter interactions whereas 0 s (in binary form) are the
complementary parameters of 1 s. It is noted that parameter
involves in parameter interactions is termed as interaction element
throughout this paper. As illustration, consider the input parameters
as shown in Figure 2. In fact, these inputs are summarized as
symbolic data (Table 1) which AURA strategy adopts. Supposed
that we intent to generate an input-output based relationship
interaction test suite that comprised of 2 coverage requirements, R
= (ABC, DE). As far as the parameter interactions groups are
concerned, AURA strategy will generalize these as 11100 (for ABC)
and 00011 (for DE) respectively. The similar mechanisms can be
applied to both uniform and variable strength interaction testing as
well. For instance, assumed that CA (2, 25) and VCA (2, 25 CA (3,
23)) in this case. For all of these, the parameter interactions groups

3422 Sci. Res. Essays

Figure 3. Pseudo-code of interaction pair generation algorithm.

and their subsequent binary representations are summarized in
Table 2.

Upon generation of aforementioned parameter interactions
groups in binary representations, ‘interaction pair generation’
algorithm proceeds to generate all possible interaction pairs. To do
so, for each parameter interactions group, exhaustive combinations
will be formed within its interaction elements whereas the do not
care (‘X’) values are assigned on the corresponding non interacting
elements. Table 3 depicts the resultant interaction pairs for ABC
and DE and Figure 3 shows the pseudo-code of ‘interaction pair
generation’ algorithm. As could be seen in Figure 3, AURA strategy
adopts dynamic partitioned base data structure, IE, in Interaction
Pair Generation algorithm to hold the generated interaction pairs
since it offers systematic and well organized space search rather
than the unpartitioned base data structure, in which every search
always begin from the first data of the bulky irregular data structure.
This data structure is termed as dynamic since the number of
partition for data structure relies on the number of parameter
interactions group involved. In this example, AURA strategy used 2
partitioned data structure to store the resultant interaction pairs
accordingly.

Test suite construction algorithm

First of all, AURA strategy is implemented based on one-test-at-a
time basis (Ziyuan et al., 2008). In this basis, the test suite
generation process begins with an empty test suite. Besides that,
the interaction pairs sets that corresponding to a SUT input
specifications are generated. Then, test cases are generated and
added into that empty test suite one by one, until all interaction
pairs are covered. Meanwhile, AURA strategy also gives non-
deterministic output since the random selections are used to
construct each test case. For this reason, this strategy not always
produce similar test suite for every run; though, the generated test
suite size is compromised. In addition, AURA strategy user can
decide on the number of iterations, n. With this customizable

looping system, if the user chooses a larger value of n for typical
input, then there is higher chance for AURA strategy to give more
optimized test suite. This is due to the fact that, by having more
iterations (corresponding to higher value of n) on assigning
additional set of random values and checking corresponding
uncovered interaction pairs (in IE) process, AURA strategy gets
higher possibility to obtain the test case which have more
uncovered interaction pairs (in IE). Though, AURA strategy
consumes extra computational time for these. In other side of coin,
AURA strategy generates less optimized test suites with smaller n
value but less execution time. With the aforementioned
considerations, AURA strategy summons ‘test suite construction’
algorithm to generate test suite once the interaction pairs are
generated. Figure 4 illustrates the pseudo-code of ‘test suite
construction’ algorithm. In order to generate test suite, a test case,
α is proposed by forming the first combination of exhaustive
combinations (for interaction elements) and assigning random
values to those non interacting elements from the first group of
parameter interactions. As assigning random values are non-
deterministic in nature, one may also get different kind of results for
each proposed α. Then, based on IE as well, AURA strategy
subsequently verifies the number of interaction pairs, β, which could
be covered by α.

Next, α is promptly sent to final test suite, τ if only if it covered all
of its corresponding interaction pairs (indicating an optimized test
case has been found). Otherwise, AURA strategy will reassign
another set of random values and check for its covering interaction
pairs. As long as the optimized test case has not been discovered,
AURA strategy will repeat the assigning and checking process for n
(number of iterations) times. Among the n test cases been
proposed, AURA strategy will select a test case greedily (that is,
with the greatest number of uncovered interaction pairs in IE). The
selected test case is then added into τ. The corresponding β in IE
are then eliminated before the system proceeds to propose next α.
The τ is considered completely formed as all interaction pairs in IE
are covered, indicating all interaction coverage from coverage
requirements are included.

Ong and Zamli 3423

Table 2. Summary of parameter interactions groups.

Types of interaction testing Parameter interactions groups Binary representations

Input-output based relationship {ABC, DE} {11100, 00011}

Uniform strength, CA (2, 2
5
) {AB, AC, AD, AE, BC, BD, BE, CD, CE, DE} {11000,10100, 10010, 10001, 01100, 01010, 01001, 00110, 00101, 00011}

Variable strength, VCA (2, 2
5
 CA (3, 2

3
) { AB, AC, AD, AE, BC, BD, BE, CD, CE, DE, CDE} {11000,10100, 10010, 10001, 01100, 01010, 01001, 00110, 00101, 00011, 00111}

Table 3. The resultant interaction pairs for coverage requirements ABC and DE.

Parameter interaction ABC DE

Parameter A B C D E A B C D E

Interaction pairs

a1 b1 c1 X X X X X d1 e1

a1 b1 c2 X X X X X d1 e2

a1 b2 c1 X X X X X d2 e1

a1 b2 c2 X X X X X d2 e2

a2 b1 c1 X X

a2 b1 c2 X X

a2 b2 c1 X X

a2 b2 c2 X X

Actual data mapping algorithm

As existing strategies are focused on test suite
minimization efforts; therefore, less intention has been
drawn into the input-output mapping automation supports
to map the test data from symbolic value to actual data
form. Consequently, test engineers will have to manually
perform the mapping process before the test suite can be
used for testing execution phase or else some automated
mapping efforts are still be required. In this scenario,
AURA strategy has incorporated with this automated
mapping concern as far as the test suite practicality is
concerned. Specifically, the automated mapping support in
AURA strategy is known as post-processing mapping
system. In this case, the term of post-processing refers to
the test cases generation process is prior to the automated
input-output mapping process, which allows symbolic
inputs to be executed on AURA strategy (instead of real
values) and generates real value outputs via a predefined
look-up table. It is noted that the look-up table is

summarized by test engineers before they specify inputs
(in symbolic values) to AURA strategy. Thus, this feature
enhances the mapping automation support while
maintaining the ease of data manipulation in test suite
construction. In order to implement the post-processing
automated input-output mapping system, AURA strategy
employed Actual Data Mapping algorithm to support both
symbolic values as well as actual data output generation.
Figure 5 depicting the pseudo-code of ‘actual data
mapping’ algorithm. In this case, AURA strategy generates
symbolic values results which are similar output format as
some other strategies possessed. Moreover, with this
feature, AURA strategy is also capable to map back the
test cases with their actual data based on the
corresponding look-up table.

To accomplish this aim, the actual data information from
the look-up table is stored in σ as shown in Figure 5. Then,
for the first test case in the τ, AURA strategy maps that test
case, which is in symbolic values back into actual data
form based on σ. After that, the test case (in actual data

form) is then written into an output file, ‘ofile’. This mapping
process is repeated until all test cases in the final test suite
are converted. For instance illustration, Figure 6 shows a
typical constructed test suite in terms of symbolic values
and also the conversion from that to actual data based on
our previous example.

RESULTS AND DISCUSSION

Here, we evaluate AURA strategy with current
benchmarking input-output based relationship
interaction testing strategies. As mentioned
earlier, AURA strategy can support three
distinctive types of interaction testing:

input-output based relationship interaction testing,
uniform and variable strength interaction testing.

3424 Sci. Res. Essays

Figure 4. Pseudo-code of test suite construction algorithm.

Figure 5. Pseudo-code of actual data mapping algorithm.

Ong and Zamli 3425

Figure 6. Conversion from symbolic values to actual data for a typical test suite.

Table 4. Comparison of different strategies for F1 = {310} and different size of R.

|R| Density ParaOrder Union TVG AURA

10 86 105 503 86 89

20 95 103 858 105 99

30 116 117 1599 125 132

40 126 120 2057 135 139

50 135 148 2635 139 147

60 144 142 3257 150 158

Therefore, three experiments are conducted
accordingly.For the first experiment, 2 set of factors are
chosen to represent the systems with fixed-level factors
and mixed-level factors respectively in order to evaluate
the effectiveness of AURA strategy on input-output based
relationship interaction testing. The fixed-level factors are
consisted of 10 factors (parameters) where each factor
have 3 levels (options) and defined as F1 = (3

10
) whereas

mixed-level factors are 3 factors of 2 options, 3 factors of
3 options, 3 factors of 4 options and a factor with 5
options and denoted as F2 = (2

3
× 3

3
× 4

3
× 5). AURA

strategy is then required to generate test cases for these
factor sets based on predefined input-output interactions.
The input-output interactions are built by selecting
coverage requirements from a pool of coverage
requirements in Wang et al. (2007); they are also
attached in appendix of this paper. Based on these, there
are 6 iterations in the experiment for each factor set. The
first 10 coverage requirements are included for the first
iteration and defined as |R| = 10. The input-output
interactions are then been added with another 10

following coverage requirements for consecutive iteration.
Tables 4 and 5 have shown the generated test suites size
from AURA strategy as well as other published
strategies. Meanwhile, there are eight different input
specifications (S1 to S8) of uniform strength interaction
testing that commonly applied in other published
strategies. Hence, AURA strategy is executed based on
these and gave the test suite sizes as summarized in
Table 6. As far as the benchmarking is concerned,
existing variable strength interaction testing strategies
tend to refer on the input specifications proposed by
Cohen et al. (1997) and Myra et al. (2003b). Therefore,
AURA strategy adopted these as the inputs for the last
experiment.

The results are depicted in Table 7. Before any further
discussion is made, several experimental clarifications
are deduced here. First of all, it is noted that all the
results are obtained by using Windows XP with a 2.80
GHz Core 2 Duo CPU and 2 GB RAM with Java (JDK
1.6) installed. Besides that, the data from others work
(that is Density, ParaOrder, Union, TVG, PICT, AETG,

3426 Sci. Res. Essays

Table 5. Comparison of different strategies for F2 = {23 x 33 x 43 x 5} and different size of R.

|R| Density ParaOrder Union TVG AURA

10 144 144 505 144 144

20 160 161 929 161 182

30 165 179 1861 179 200

40 165 183 2244 181 207

50 182 200 2820 194 222

60 197 204 3587 209 230

Table 6. Sizes of generated t-way combinatorial test suites (t = 3).

 Density ParaOrder TVG PICT AETG GA ACA GA-N IPO-N IPO Jenny AURA

S1 53 53 48 48 38 33 33 52 47 48 51 50

S2 64 106 120 111 77 64 64 85 64 64 112 93

S3 213 225 239 215 194 125 125 223 173 200 215 229

S4 362 363 409 369 330 331 330 389 271 366 373 394

S5 1592 1624 1949 1622 1473 1501 1496 1769 1102 1678 1572 1874

S6 242 225 269 241 218 218 218 336 199 239 236 260

S7 119 111 133 119 114 108 106 120 113 120 130 125

S8 365 379 429 368 377 360 361 373 368 464 397 401

(S1: 3
6
; S2: 4

6
; S3: 5

6
; S4: 6

6
; S5: 10

6
; S6: 5

7
; S7: 5

2
4

2
3

2
; S8: 10

1
6

2
4

3
3

1
).

GA, ACA, GA-N, IPO-N, IPO, Jenny, SA and ACS) are
collected from published articles in Myra et al. (2003b),
Xiang et al. (2009) and Ziyuan et al. (2008). Since ACS
strategy (Xiang et al., 2009) possesses randomness
algorithm, and its results are obtained based on 200
iterations; hence, AURA strategy also performed 200
iterations throughout the experiments. As AURA strategy
is non-deterministic in nature, 20 independent runs have
been performed and the best results (with minimal test
cases) of these runs are reported for each input. Lastly,
no fair comparison for test cases generation time is able
to be performed due to the differences or unspecified of
computing environments in the published literatures.
Thus, this aspect is excluded in our discussion. Based on
Tables 4 and 5, ‘density’ produced smallest test suites for
almost all inputs. However, AURA strategy also produced
considerable results in this case. For instance, AURA
strategy gave optimized test suite at |R| = 10 for F2 = (2

3

x 3
3
 x 4

3
 x 5) and produced better results than ParaOrder

as well as TVG in some other cases. Particularly, AURA
strategy always generates smaller test suites than Union
for each input. By referring to Table 6, none of the
reported strategies is accomplished to give the best
results for all input configurations of uniform strength
interaction testing. In addition, we discovered that there is
no big gap in terms of test suites sizes constructed by
AURA strategy with some classic algorithms. For some
inputs, AURA strategy even produced better output than
Density, ParaOrder, PICT, GA-N, IPO and Jenny.
Meanwhile, AURA strategy generated smaller size than

TVG for most of the inputs as well. Despite of the test
suite optimality has been concerned, most of the existing
uniform strength interaction testing strategies (AETG,
GA, ACA, GA-N, IPO-N, IPO and Jenny) do not address
capability of input-output interaction testing as well as
variable strength interaction testing.

Concerning variable strength interaction testing test
suites as shown in Table 7, simulated annealing (SA)
strategy is often effective in constructing small test suite
size but it does not support input-output interaction
testing. Besides that, it is worth to mention that AURA
strategy frequently performed well against PICT as far as
the size is concerned. In addition, AURA strategy is
comparable in certain cases as compared to Density,
ParaOrder and TVG, by generating smaller test suites.
Moreover, there comprised of four input specifications at
which AURA strategy produced optimized results that as
optimized as SA strategy. They are namely: CA (3, 5

3
),

CA (3, 4
3
) + CA (3, 5

3
) and CA (3, 5

1
6

2
) from VCA [m; 2,

4
3
5

3
6

2
, (CA)] and also VCA (m; 2, 3

20
10

2
). Apart from

supporting all forms of t-way testing possibilities (for
example uniform strength, variable strength, and input-
output based relation) and generating competitive test
size, the main contribution of AURA strategy is the fact
that it provides seamlessly integration of input-output
mapping of actual data values as part of the strategy
itself. Comparatively, AURA strategy can be put side-by-
side with GTWay (Zamli et al., 2011). GTWay takes the
preprocessing approach through the use of fault file to
address its input-output mapping of actual data. Although

Ong and Zamli 3427

Table 7. Sizes of variable strength interaction testing test suites.

{C} Density ParaOrder SA PICT TVG ACS AURA

VCA(m; 2, 3
15

, {C})

Ø 21 33 16 35 22 19 21

CA(3, 3
3
)

28 27 27 81 27 27 28

CA(3, 3
3
)
2
 28 33 27 729 30 27 30

CA(3, 3
3
)
3
 28 33 27 785 30 27 31

CA(3, 3
4
) 32 27 27 105 35 27 35

CA(3, 3
5
) 40 45 33 131 41 38 42

CA(3, 3
4
)

46 44 34 1376 53 40 50 CA(3, 3
5
)

CA(3, 3
6
)

CA(3, 3
6
) 46 49 34 146 48 45 46

CA(3, 3
7
) 53 54 41 154 54 48 53

CA(3, 3
9
) 60 62 50 177 62 57 62

CA(3, 3
15

) 70 82 67 83 81 76 88

VCA(m; 2, 4
3
5

3
6

2
, {C})

Ø 41 49 36 43 44 41 44

CA(3, 4
3
) 64 64 64 384 67 64 64

CA(3, 4
3
5

2
) 131 141 100 781 132 104 127

CA(3, 5
3
) 125 126 125 750 125 125 125

CA(3, 4
3
)

125 129 125 8000 125 125 125
CA(3, 5

3
)

CA(3, 4
3
5

3
6

1
) 207 247 171 1266 237 201 224

CA(3, 5
1
6

2
) 180 180 180 900 180 180 180

CA(3, 4
3
5

3
6

2
) 256 307 214 261 302 255 287

VCA(m; 2, 3
20

10
2
, {C})

Ø 100 100 100 100 101 100 100

CA(3, 3
20

) 100 103 100 940 103 100 107

CA(3, 3
20

10
2
) 401 442 304 423 423 396 586

useful, this preprocessing approach introduces some
timing overhead to parse the actual parameter values
and to directly manipulate actual data for test generation.
Particularly, it is reported that the overhead penalty
incurred in GTWay is directly proportional to the number
of defined base test cases (approximately 50 us per
additional defined test). Unlike GTWay, AURA strategy
adopts post-processing approach, that is, the mapping to
actual values is achieved after generation via look-up
tables. Thus, no time is wasted on loading fault file and
parsing parameter. In this case, AURA strategy provides
better mapping automation feature than GTWay.

Furthermore, unlike existing strategies, the iterations of
assigning additional set of random values and checking
corresponding uncovered interaction pairs in AURA
strategy can be controlled (that is the number of iterations
is customizable).

On one hand, when the optimality of test suite size is
preferred than generation time, AURA strategy can
increase the iterations looping number in order to
generate more optimized test suite. On the other hand,
AURA strategy can decrease the iterations looping to get
fast test suite construction. This notable customization is
useful to provide the flexibility for the users to decide their

3428 Sci. Res. Essays

preference (either the optimality of test suite or fast
generation time).

CONCLUSIONS

This paper has discussed the development of a flexible
input-output based t-way strategy called, AURA.
Experimental data shown AURA strategy generally
produces competitive test suites for all these inputs.
Moreover, AURA strategy that implemented the post-
processing automation on converting back test suites into
actual value form has alleviated the burden of software
tester from mapping the test suites manually. In future
work, more practical features such as seeding and
constraint implementations shall be incorporated into
AURA strategy to further enhance its reliability and
usability.

ACKNOWLEDGMENTS

This research is partially funded by the generous
fundamental grants: “investigating t-way test data
reduction strategy using particle swarm optimization
technique” from Ministry of Higher Education (MOHE)
and the USM research university grants: “Development of
variable strength interaction testing strategy for t-way test
data generation” and PRGS: “implementing distributed t-
way test data generator by using tuple space
technology”. The first author is the recipient of the USM
postgraduate fellowship.

REFERENCES

Ahmed BS, Zamli KZ (2010). PSTG: A T-Way Strategy Adopting

Particle Swarm Optimization. Fourth Asia Int. Conf. on Math./Anal.
Model. & Comput. Simul. (AMS), pp. 1-5.

Ahmed BS, Zamli KZ, Lim CP (2011). Constructing a T-Way Interaction
Test Suite Using Particle Swarm Optimization Approach. Int. J. Innov
Comput. Inf. Control., 7(11): 1741-1758.

Arshem J (2009). Test Vector Generator Tool (TVG). Retrieved 20
December 2010, from http:///sourceforge.net/projects/tvg.

Baowen X, Lei X, Changhai N, William C, Chang CH (2003). Applying
combinatorial method to test browser compatibility. Multimedia Softw.
Eng., 2003. Proc. Fifth Int. Symp., pp.156-162.

Basili VR, Selby RW (1987). Comparing the Effectiveness of Software
Testing Strategies. IEEE Trans. Softw Eng. SE-13(12): 1278-1296.

Beer A, Mohacsi S (2008). Efficient Test Data Generation for Variables
with Complex Dependencies. 1st Int. Conf. on Softw. Test.,
Verification Valid, pp. 3-11.

Bryce RC, Colbourn CJ (2007). The density algorithm for pairwise
interaction testing. Softw Test, Verification Reliab., 17(3): 159-182.

Cemal Y, Myra BC, Adam AP (2006). Covering Arrays for Efficient Fault
Characterization in Complex Configuration Spaces. IEEE Trans.
Softw Eng. 32(1): 20-34.

Cheng C, Dumitrescu A, Schroeder P (2003). Generating small
combinatorial test suites to cover input-output relationships. Proc. of
third Int. Conf. on Qual. Softw., pp.76-82.

Cohen DM, Dalal SR, Fredman ML, Patton GC (1997). The AETG
system: an approach to testing based on combinatorial design. IEEE
Trans, Softw Eng., 23(7): 437-444.

Czerwonka J (2006). Pairwise Testing in Real World: Practical

Extensions to Test Case Generators. Proc. of 24th Pac. Northwest

Softw. Qual. Conf.
Jangbok K, Kyunghee C, Hoffman DM, Gihyun J (2007). White Box

Pairwise Test Case Generation. Seventh Int. Conf. on Qual. Softw.,
QSIC, pp. 286-291.

Kimoto S, Tsuchiya T, Kikuno T (2008). Pairwise Testing in the
Presence of Configuration Change Cost. Second Int. Conf. on Secur.
Syst. Integr. & Reliab. Improv., SSIRI, pp. 32-38.

Klaib MFJ, Zamli KZ, Isa NAM, Younis MI, Abdullah R (2008). G2Way A
Backtracking Strategy for Pairwise Test Data Generation. 15th Asia-
Pac. Softw. Eng. Conf., APSEC, pp. 463-470.

Kuhn DR, Wallace DR, Gallo AM, Jr. (2004). Software fault interactions
and implications for software testing. IEEE Trans. Softw Eng. 30(6):
418-421.

Lei Y, Kacker R, Kuhn DR, Okun V, Lawrence J (2007). IPOG: A
General Strategy for T-Way Software Testing. 14th Annu. IEEE Int.
Conf. & Workshops on the Eng. Comp.-Based Syst. ECBS, pp. 549-
556.

Maity S, Nayak A (2005). Improved test generation algorithms for pair-
wise testing. 16th IEEE Int. Symp. on Softw. Reliab. Eng. ISSRE., 10:
244.

McCaffrey JD (2009a). Generation of Pairwise Test Sets Using a
Genetic Algorithm. Comp. Softw. & Appl. Conf., 2009. COMPSAC
'09. 33rd Annu. IEEE Int., 626-631.

McCaffrey JD (2009b). Generation of pairwise test sets using a
simulated bee colony algorithm. Inf. Reuse & Integr., 2009. IRI '09.
IEEE Int. Conf.,pp.115-119.

Myra BC (2003). Augmenting Simulated Annealing to Build Interaction
Test Suites. Int. Symp. on Softw. Reliab. Eng., pp. 394-394.

Myra BC, Peter BG, Warwick BM, Charles JC (2003a). Constructing
test suites for interaction testing. Proc. of the 25th Int. Conf. on Softw.
Eng. Portland, Oregon, IEEE Computer Society.

Myra BC, Peter BG, Warwick BM, Charles JC, James SC (2003b).
Variable Strength Interaction Testing of Components. Proc. of the
27th Annu. Int. Conf. on Comp. Softw. & Appl., IEEE Computer
Society.

Nie C, Leung H (2011). A survey of combinatorial testing. ACM Comput.
Surv., 43(2): 1-29.

Patrick JS (2001). Black-box test reduction using input-output analysis.
PhD dissertation, Illinois Institute of Technology, Chicago, IL, USA

Patrick JS, Bogdan K (2000). Black-box test reduction using input-
output analysis. Proc. of the ACM SIGSOFT int. symp. on Softw. test.
& anal. Portland, Oregon, United States, ACM.

Patrick JS, Pat F, Bogdan K (2002). Generating Expected Results for
Automated Black-Box Testing. Proc. of the 17th IEEE int. conf. on
Autom. softw. eng., IEEE Computer Society.

Reid SC (1997). An empirical analysis of equivalence partitioning,
boundary value analysis and random testing. Proc. of Fourth Int.
Softw. Metr. Symp., pp. 64-73.

Reussner R, Mayer J, Stafford J, Overhage S, Becker S, Schroeder P,
Nie C, Xu B, Shi L, Dong G (2005). Automatic Test Generation for N-
Way Combinatorial Testing. Qual. of Softw. Archit. and Softw. Qual.,
Springer Berlin / Heidelberg, 3712: 203-211.

Sunderam V, van Albada G, Sloot P, Dongarra J, Shi L, Nie C, Xu B
(2005). A Software Debugging Method Based on Pairwise Testing.
Comput. Sci. – ICCS 2005, Springer Berlin / Heidelberg, 3516: 55-81.

Wang Z, Nie C, Xu B (2007). Generating combinatorial test suite for
interaction relationship. Fourth int. workshop on Softw. qual. assur.:
in conjunction with the 6th ESEC/FSE jt. meet. Dubrovnik, Croatia,
ACM.

Xiang C, Qing G, Ang L, Daoxu C (2009). Variable Strength Interaction
Testing with an Ant Colony System Approach. Proc. of the 16th Asia-
Pac. Softw. Eng. Conf., IEEE Computer Society.

Yan J, Jian Z (2006). Backtracking Algorithms and Search Heuristics to
Generate Test Suites for Combinatorial Testing. 30th Annu. Int.
Comput. Softw & Appl Conf, COMPSAC,385-394.

Yingxia C (2009). A New Strategy for Pairwise Test Case Generation.
Workshop on Intel. Inf. Technol. Appl., 303-306.

Younis MI, Zamli KZ (2010). MC-MIPOG: A parallel t-way test
generation strategy for multicore systems. ETRI J., 32(1): 73-83.

Yu L, Kuo-Chung T (1998). In-Parameter-Order: A Test Generation
Strategy for Pairwise Testing. The 3rd IEEE Int. Symp. on High-

Assur. Sys. Eng., IEEE Computer Society.
Yu L, Raghu K, Kuhn DR, Vadim O, James L (2008). IPOG-IPOG-D:

efficient test generation for multi-way combinatorial testing. Softw
Test Verif Reliab., 18(3): 125-148.

Zabil MHM, Zamli KZ, Othman RR (2011). On Sequence Based
Interaction Testing. IEEE Symp. on Comput. and Inf., Kuala Lumpur,
IEEE.,662-667.

Zamli KZ, Klaib MFJ, Younis MI, Isa NAM, Abdullah R (2011). Design
and implementation of a t-way test data generation strategy with
automated execution tool support. Inf Sci.

Ong and Zamli 3429

Zamli KZ, Younis MI (2010). Interaction Testing: From Pairwise to

Variable Strength Interaction. Fourth Asia Int. Conf. on Math./Anal.
Model. & Comput. Simul. (AMS), pp. 6-11.

Ziyuan W, Baowen X, Changhai N (2008). Greedy Heuristic Algorithms
to Generate Variable Strength Combinatorial Test Suite. The Eighth
Int. Conf. on Qual. Softw., QSIC., 155-160.

3430 Sci. Res. Essays

APPENDIX

The collection of coverage requirements in the

experiment is shown as follows: there are 10 factors in

both F
1

and F
2
, which is F = {f

1
, f

2
, f

3
, f

4
, f

5
, f

6
, f

7
, f

8
, f

9
, f

10
}.

These 10 factors could be denoted by their

corresponding sequence numbers and described as F =

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} for short (Wang et al., 2007).

Collection = {{1, 2, 7, 8}, {0, 1, 2, 9}, {4, 5, 7, 8}, {0, 1, 3,
9}, {0, 3, 8}, {6, 7, 8}, {4, 9}, {1, 3, 4}, {0, 2, 6, 7}, {4, 6},
{2, 3, 4, 8}, {2, 3, 5}, {5, 6}, {0, 6, 8}, {8, 9}, {0, 5}, {1, 3,
5, 9}, {1, 6, 7, 9}, {0, 4}, {0, 2, 3}, {1, 3, 6, 9}, {2, 4, 7, 8},
{0, 2, 6, 9}, {0, 1, 7, 8}, {0, 3, 7, 9}, {3, 4, 7, 8}, {1, 5, 7,
9}, {1, 3, 6, 8}, {1, 2, 5}, {3, 4, 5, 7}, {0, 2, 7, 9}, {1, 2, 3},
{1, 2, 6}, {2, 5, 9}, {3, 6, 7}, {1, 2, 4, 7}, {2, 5, 8}, {0, 1, 6,
7}, {3, 5, 8}, {0, 1, 2, 8}, {2, 3, 9}, {1, 5, 8}, {1, 3, 5, 7},
{0, 1, 2, 7}, {2, 4, 5, 7}, {1, 4, 5}, {0, 1, 7, 9}, {0, 1, 3, 6},
{1, 4, 8}, {3, 5, 7, 9}, {0, 6, 7, 9}, {2, 6, 7, 9}, {2, 6, 8}, {2,
3, 6}, {1, 3, 7, 9}, {2, 3, 7}, {0, 2, 7, 8}, {0, 1, 6, 9}, {1, 3,
7, 8}, {0, 1, 3, 7}}.

