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Software testing relates to the process of finding errors/defects and/or ensuring that a particular 
software of interest meets its specification. One of the key activities within software testing is on the 
test case design. Over the years, many test case design strategies have been developed in the literature 
including that of boundary values, equivalence partitioning, decision tables, robustness consideration 
as well as cost and effect graphing. Although useful, these strategies do not sufficiently cater for bugs 
due to interaction. Addressing the aforementioned issue, many researches into interaction based 
strategies, called t-way strategies (where t represents interaction strength), have started to emerge in 
the literature. This paper presents the development of a new t-way strategy called AURA. AURA 
strategy serves as our research vehicle to investigate the usefulness of automated mapping based on 
input-output relationship as well as its flexible iteration control for constructing t-way test suite. 
Benchmarking results demonstrate that AURA strategy gives competitive results against most existing 
strategies. 
 
Key words: Interaction testing, t-way testing, variable strength interaction testing, input-output based 
relationship interaction testing, automated mapping support. 

 
 
INTRODUCTION 
 
Software can fail in many unexpected ways (Kimoto et 
al., 2008; Maity and Nayak, 2005). Thus, in order to 
ensure quality and conformance to specifications, there is 
a need to exhaustively test them. Yet, exhaustive testing 
is practically impossible. Addressing this issue, many test 
case design strategies have been developed in the 
literature (for example boundary value analysis, 
equivalence partitioning, decision tables and random 
testing (Basili and Selby, 1987; Beer and Mohacsi, 2008; 
Kuhn et al., 2004; Reid, 1997) to help sample out test 
data into manageable ones. Although useful, these 
strategies do not sufficiently cater for faults due to 
interaction. For this reason, t-way strategies have started 
to emerge. Numerous efficient t-way testing strategies 
have been proposed in the past literatures (Ahmed et al., 
2011; Baowen et al., 2003; Jangbok et al., 2007; Klaib et  
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al., 2008; Lei et al., 2007; Sunderam et al., 2005; Yingxia, 
2009; Younis and Zamli, 2010) to generate optimized test 
cases for SUT. Meanwhile, most of the reported 
strategies that evolved earlier, enumerate their test cases 
by covering all t-interactions of parameters involved. 
These are known as uniform strength interaction testing 
since t is a fixed integer value in their consideration. 
However, t is rarely uniform in real world. Not all 
interaction faults from typical SUT are solely constituted 
by these t-interactions. In fact, a particular subset of 
parameters can have a higher degree of interaction than 
others which indicating failures due to the interaction of 
that subset may have more significant impact to the 
overall system (Myra et al., 2003a). For example, 
consider a subset of components that control a safety-
critical hardware interface. A stronger coverage is 
needed in that area (that is t = 3) but the rest of the 
components may be sufficiently tested with pair-wise 
testing (that is t = 2). Therefore, variable strength 
interaction testing strategy is then been proposed to 
support this concern (Myra  et  al.,  2003a,  2003b;  Zamli  



 
 
 
 
and Younis, 2010; Ziyuan et al., 2008). 

Variable strength interaction testing no doubt solves 
some of real considerations by allowing certain subsets 
to cover higher t-interactions, though; it is still insufficient 
to generate test cases based on actual interactions 
(Wang et al., 2007). Also, variable strength interaction 
test suite is tightly coupled by its interaction strength. As 
such, variable strength interaction can be regarded as the 
combinations of uniform strength interaction testing in the 
smaller scale. As some of t-interactions are not 
responsible to actual interactions but still have to be 
taken into account on test cases generation, this strategy 
might include these redundant test cases. To overcome 
this limitation, recent studies (Patrick and Bogdan, 2000; 
Patrick et al., 2002; Wang et al., 2007; Zabil et al., 2011) 
claimed that interaction testing should focus on those 
input combinations that affect a program output, rather 
than considering all possible input combinations. 
Consequently, a general solution has been introduced: 
input-output based relationship interaction testing (Patrick 
and Bogdan, 2000). This strategy captures the actual 
interactions for SUT based on input-output relationship 
and is also capable to revert back and support both 
uniform and variable strength test suite generation. For 
this reason, developments of efficient input-output based 
relationship interaction testing strategies are preferable. 
As far as implementation is concerned, most existing 
strategy implementations (Ahmed and Zamli, 2010; Lei et 
al., 2007; Younis and Zamli, 2010; Yu and Kuo-Chung, 
1998) generate their outputs in terms of symbolic 
parameters for ease of data manipulation. This could be 
straightforward but not user friendly approach because 
test engineers have to manually map these symbolic 
values to actual data one by one before they could 
execute on them. As the test case number is 
predominantly large especially in highly configurable 
software systems, these could be another problematic 
issue in term of time and cost consumed as well as the 
accuracy of test cases (due to the potential of human 
errors on manually mapping process). Hence, there is a 
need for automated input-output mapping to seamlessly 
translate the symbolic outputs back into the actual data 
form. Apart from automated input-output mapping, 
existing strategy implementations are also lacking as far 
as flexibility of test suite generation is concerned. Here, 
the problem of t-way test suite generation can be seen as 
two sides as the same coin with optimal size and test 
generation time being the sides. On one side of the coin, 
when the optimality of test suite size is preferred than 
generation time, a strategy need to be adaptable to 
generate more optimized test suite. On the other side of 
same coin, a strategy needs to be flexible enough to 
generate fast test suite but in expense of optimality. In 
order to address these aforementioned issues, we have 
developed a non-deterministic input-output based 
relationship t-way testing strategy, AURA. 

AURA   strategy   serves   as   our  research  vehicle  to  
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investigate the usefulness of automated mapping based  
on input-output relationship as well as its flexible iteration 
control for constructing t-way test suite. Benchmarking 
results demonstrate that AURA strategy gives 
competitive results against most existing strategies. The 
rest of the paper is structured as follows: Subsequently 
the mathematical background on interaction testing is 
given after which the study discusses the recent related 
work on input-output based relationship interaction 
testing; whereas, the development of AURA strategy is 
further illustrated and clarified. Then, we compare and 
discuss our results with other existing strategies. Lastly, 
we conclude our work. 
 
 

MATHEMATICAL BACKGROUND 
 

Mathematically, interaction testing can be abstracted to a 
covering array (CA). CA is a combinatorial object that 
been extensively used to generate interaction test cases 
in software systems when all factors (parameters) have 
equal number of levels (options or values). A covering 
array, CA (N; t, k, v), is an array with N rows and k 
columns that satisfies the criteria that each t-tuple occurs 
at least once within these rows (Cemal et al., 2006; Myra, 
2003). When N is unknown or unspecified, the notation 
CA (t, k, v) can be used (that is t is interaction strength, k 
is the number of factors and v is the number of options 
associated with each factor). For covering array, the 
value of v is the same for all k. Meanwhile, mixed-level 
covering array is a generalization of covering array that 
allows for different alphabet sizes for different rows. The 
mixed-level covering array is denoted as MCA (N; t, k, 
(v1, v2, …, vk)), an N x k array on v symbols (Bryce and 

Colbourn, 2007; Yan and Jian, 2006), where ∑
=

=

k

i i
vv

1

, with the following properties: 
 

1) Each column I (1 ≤ I ≤ k) contains only elements from a 
set Si with | Si | = vi. 
2) The rows of each N x t sub-array cover all t-tuples of 
values from the t columns at least once. 
 
A shorthand notation can be used to describe MCA (also 
for CA, VCA and IOR) by combining the same vi’s and 
representing this number as a superscript (Yan and Jian, 
2006). For instance, three vi’s each with two options is 
written as 2

3
. In this manner, an MCA (N; t, k, (v1, v2, …, 

vk)) can also be written as an MCA (N; t, (s1
p1

, s2
p2

, …, 

sr
pr

)) where ∑
=

=

r

i i
pk

1
. Variable strength covering 

array, denoted as VCA (N; t, (v1, v2, …, vk), C), is an N x k 
mixed level covering array, of strength t containing C, a 
vector of covering arrays each of strength greater than t 
and defined on a subset of the k columns. Ordering of the 
columns in the representation of a VCA is important since 
the columns of the covering arrays in C are listed 
consecutively from left to right (Myra et al., 2003b; Ziyuan  
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et al., 2008). Unlike CA, MCA and VCA, input-output 
based relationship covering array needs not generate test 
cases to cover all t-way interactions but only required to 
cover all actual interactions. This covering array can be 
denoted as IOR (N; (v1, v2, …, vk), R), an N x k mixed 
level covering array which covers interaction relationship, 
R, of a typical software SUT. R is consisted of w number 
of interaction coverage requirement, r, which specified 
the actual interactions for that SUT and is defined as

},...,,{
21 wrrrR =

 
(Patrick and Bogdan, 2000; Wang et 

al., 2007). Each r indicates a set of inputs (factors) that 
are interacting and is constitute to a specified interaction 
coverage requirement. 
 
 

RELATED WORK 
 
In the last 15 years, many t-way strategies have been 
proposed in the literature including automatic efficient test 
generator (AETG) (Cohen et al., 1997), pairwise 
independent combinatorial testing (PICT) (Czerwonka, 
2006), in parameter order (IPO) and its variants (Lei et 
al., 2007; Reussner et al., 2005; Younis and Zamli, 2010; 
Yu and Kuo-Chung, 1998; Yu et al., 2008), genetic 
algorithm (GA) (McCaffrey, 2009a), simulated bee colony 
algorithm (SBC)  (McCaffrey, 2009b), simulated 
annealing (SA) (Myra et al., 2003b) and ant colony 
system (ACS) (Xiang et al., 2009). All aforementioned 
strategies are found useful and become the pioneers in t-
way and variable strength interaction testing. Moreover, a 
comprehensive survey of interaction testing has been 
published by Nie and Leung (2011) recently. However, in 
line of the scope of this paper, the further discussions 
shall be drawn on the recent works in input-output based 
relationship interaction testing. Considering the support of 
input-output based relationship interaction testing, much 
useful effort is also emerging. Patrick (2001) proposed 
the model of input-output based relationship testing 
method and gave three different test generation 
algorithms (Patrick, 2001; Patrick and Bogdan, 2000; 
Patrick et al., 2002) to solve the problem of test cases 
generation for software with complex input-output 
relationship. Their first approach implemented a brute 
force algorithm to explore all possible combinations of 
test to discover the correct minimal test suite (Patrick and 
Bogdan, 2000). Although straightforward, brute force 
algorithm tends to consume time especially involving 
large test data. Next, they proposed Union algorithm 
(Patrick, 2001) by generating a serial of test suite (that is, 
sets of test cases) for output variables to cover the 
interaction that is corresponding to their associative 
inputs variables, and then taking the union of them to 
obtain a final test suite. 

The implementation of the Union algorithm is 
straightforward with low time complexity but generally not 
producing optimal test suite. Lastly, Patrick et al. (2002) 
proposed   Greedy   algorithm.   The  algorithm  works  by  

 
 
 
 
selecting an unused test case that covers the greatest 
number of uncovered combinations of input values each 
times until all interactions have been covered by the 
selected test suite. It indeed generate a much smaller 
test suite than Union algorithm, but with a bad time and 
space performance since this method has to check all 
test cases in a huge search space. To overcome this 
constraint, Cheng et al. (2003) implemented a problem 
reduction method which is based on color graph in their 
later work. This method only shows significant gain in 
efficiency (both time and space performance) when the 
number of colors used is small relative to the number of 
nodes in a complete graph. In other words, this reduction 
method is merely applicable for simple relationships 
between the input parameters based on their 
occurrences in the output parameters. Later on, Wang et 
al. (2007) analyzed and improved Union algorithm 
(Patrick, 2001). They suggested that all the positions 
corresponding to each “do not care” factor shall not be 
assigned until a coverage requirement which include that 
factor is dealt. With this perception, the improved Union 
algorithm (termed as ReqOrder) generated better results 
in term of test suite size reduction as compared with 
previous work. Despite of this, they also implemented 
input-output interaction testing by adopting in-parameter-
order strategy (Yu and Kuo-Chung, 1998), which is 
known as ParaOrder (Wang et al., 2007; Ziyuan et al., 
2008). For this strategy, an initial test suite will be 
constructed for a sub-system with small number of 
factors. The system is then extended by adding a new 
factor to get a test suite for the new sub-system. The 
extending process is repeated until all factors have been 
added into that system. As far as the input-output 
interaction test suite size is concerned, ParaOrder gave 
comparable results against Greedy algorithm and better 
test suites than Union algorithm and ReqOrder. 

Meanwhile, Ziyuan et al. (2008) utilized one-test-at-a-
time strategy (Cohen et al., 1997) and density concept 
(Patrick et al., 2002) to generate test suite. This approach 
is generally consumed longer computational time against 
others (Union, ReqOrder and ParaOrder) although it 
mostly produced better test suite than them. In addition, 
there is an interaction testing tool; test vector generator 
(TVG) (Arshem, 2009) which is capable to generate test 
suite based on input-output relationship, uniform strength 
and variable strength t-way coverage as well as random 
manner. However, its implementation details are 
unknown. While most of the strategies produce test 
cases in symbolic values, automatically maps these test 
cases back into actual data form is therefore another 
practical feature shall be taken into account. A recent 
strategy, GTWay (Zamli et al., 2011) started to address 
this automated mapping need. At a glance, GTWay 
implemented a preprocessing automated mapping 
system by employing Parser algorithm to capture the 
actual values from the fault file and map them into 
symbolic representations before they can be used for t-



 
 
 
 

 
 

Figure 1. Overview of AURA strategy. 
 
 
 

 
 
Figure 2. A typical look-up table. 

 
 
 

way test cases generation. Upon completion of test suite 
generation, GTWay remaps these symbolic data 
representations into actual data values. Nevertheless, 
GTWay consumed a significant portion of execution time 
to read and convert the actual data from the fault file and 
this lead to an overhead penalty incurred during the 
preprocessing mapping process. 
 
 
OVERVIEW OF AURA STRATEGY 
 
As input-output based relationship interaction testing is more  
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Table 1. Symbolic notations for inputs with 5 parameters 
(each 2 values). 
 

Parameter A B C D E 

Base 
values 

a1 b1 c1 d1 e1 

a2 b2 c2 d2 e2 

 
 
 
flexible to accommodate the actual interactions for a typical SUT, 
we have opted to develop AURA strategy which supports input-
output interaction test suite generation. Moreover, the urge of 
automated input-output mapping support in the sense of generating 
actual value test suites encourages AURA strategy to adopt this 
mapping automation feature as well. Throughout this section, the 
development of AURA strategy with input-output mapping supports 
will be highlighted accordingly. Basically, this strategy is composed 
of three algorithms: “interaction pair generation algorithm, test suite 
construction algorithm and actual data mapping algorithm”. The 
overview of the AURA strategy has been summarized in Figure 1. 
Referring back to Figure 1, a software tester clarifies and 
summarizes the inputs (in terms of actual data form) into a look-up 
table for typical software SUT. In order to generate intended test 
suite, the software tester then keys in the symbolic values of inputs 
into AURA strategy. Based on these inputs, ‘interaction pair 
generation’ algorithm will then be triggered to generate all possible 
interaction pairs, which are needed for successive operations. 

After that, ‘test suite construction’ algorithm starts to construct test 
suite by exploiting the interaction pairs that are previously 
generated. Upon completion, the results are loaded into ‘actual data 
mapping’ algorithm for generating final test suite (in actual data 
form) as specified at the predefined look-up table file. Lastly, Figure 
2 shows a typical look-up table that AURA strategy adopts. 
 
 
Interaction pair generation algorithm 
 
In AURA strategy, test suite generation is based on its 
corresponding interaction pairs. The interaction pairs are used to 
ensure the completeness of interaction coverage for specified 
coverage requirements. Hence, the details on generating the 
interaction pairs shall be discussed here. In order to generate 
interaction pairs, AURA strategy first needs to enumerate the 
corresponding parameter interactions groups. As mentioned earlier, 
AURA strategy is developed to support input-output based 
relationship, uniform strength and variable strength interaction 
testing. Therefore, one would ask how the AURA strategy 
enumerates the parameter interactions groups and also the 
interaction pairs with these different kinds of considerations. 
Indeed, AURA strategy generalizes and converts these parameter 
interactions groups into binary representations (that is, 0 and 1 s). 
After the conversion, for each parameter interactions group, 1 s (in 
binary form) is representing the parameters that involved in the 
parameter interactions whereas 0 s (in binary form) are the 
complementary parameters of 1 s. It is noted that parameter 
involves in parameter interactions is termed as interaction element 
throughout this paper. As illustration, consider the input parameters 
as shown in Figure 2. In fact, these inputs are summarized as 
symbolic data (Table 1) which AURA strategy adopts. Supposed 
that we intent to generate an input-output based relationship 
interaction test suite that comprised of 2 coverage requirements, R 
= (ABC, DE). As far as the parameter interactions groups are 
concerned, AURA strategy will generalize these as 11100 (for ABC) 
and 00011 (for DE) respectively. The similar mechanisms can be 
applied to both uniform and variable strength interaction testing as 
well. For instance, assumed that CA (2, 25) and VCA (2, 25 CA (3, 
23)) in this case. For all of these, the parameter interactions groups  
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Figure 3. Pseudo-code of interaction pair generation algorithm. 

 
 
 
and their subsequent binary representations are summarized in 
Table 2. 

Upon generation of aforementioned parameter interactions 
groups in binary representations, ‘interaction pair generation’ 
algorithm proceeds to generate all possible interaction pairs. To do 
so, for each parameter interactions group, exhaustive combinations 
will be formed within its interaction elements whereas the do not 
care (‘X’) values are assigned on the corresponding non interacting 
elements. Table 3 depicts the resultant interaction pairs for ABC 
and DE and Figure 3 shows the pseudo-code of ‘interaction pair 
generation’ algorithm. As could be seen in Figure 3, AURA strategy 
adopts dynamic partitioned base data structure, IE, in Interaction 
Pair Generation algorithm to hold the generated interaction pairs 
since it offers systematic and well organized space search rather 
than the unpartitioned base data structure, in which every search 
always begin from the first data of the bulky irregular data structure. 
This data structure is termed as dynamic since the number of 
partition for data structure relies on the number of parameter 
interactions group involved. In this example, AURA strategy used 2 
partitioned data structure to store the resultant interaction pairs 
accordingly. 
 
 
Test suite construction algorithm 
 
First of all, AURA strategy is implemented based on one-test-at-a 
time basis (Ziyuan et al., 2008). In this basis, the test suite 
generation process begins with an empty test suite. Besides that, 
the interaction pairs sets that corresponding to a SUT input 
specifications are generated. Then, test cases are generated and 
added into that empty test suite one by one, until all interaction 
pairs are covered. Meanwhile, AURA strategy also gives non-
deterministic output since the random selections are used to 
construct each test case. For this reason, this strategy not always 
produce similar test suite for every run; though, the generated test 
suite size is compromised. In addition, AURA strategy user can 
decide on the number of iterations, n. With this customizable 

looping system, if the user chooses a larger value of n for typical 
input, then there is higher chance for AURA strategy to give more 
optimized test suite. This is due to the fact that, by having more 
iterations (corresponding to higher value of n) on assigning 
additional set of random values and checking corresponding 
uncovered interaction pairs (in IE) process, AURA strategy gets 
higher possibility to obtain the test case which have more 
uncovered interaction pairs (in IE). Though, AURA strategy 
consumes extra computational time for these. In other side of coin, 
AURA strategy generates less optimized test suites with smaller n 
value but less execution time. With the aforementioned 
considerations, AURA strategy summons ‘test suite construction’ 
algorithm to generate test suite once the interaction pairs are 
generated. Figure 4 illustrates the pseudo-code of ‘test suite 
construction’ algorithm. In order to generate test suite, a test case, 
α is proposed by forming the first combination of exhaustive 
combinations (for interaction elements) and assigning random 
values to those non interacting elements from the first group of 
parameter interactions. As assigning random values are non-
deterministic in nature, one may also get different kind of results for 
each proposed α. Then, based on IE as well, AURA strategy 
subsequently verifies the number of interaction pairs, β, which could 
be covered by α. 

Next, α is promptly sent to final test suite, τ if only if it covered all 
of its corresponding interaction pairs (indicating an optimized test 
case has been found). Otherwise, AURA strategy will reassign 
another set of random values and check for its covering interaction 
pairs. As long as the optimized test case has not been discovered, 
AURA strategy will repeat the assigning and checking process for n 
(number of iterations) times. Among the n test cases been 
proposed, AURA strategy will select a test case greedily (that is, 
with the greatest number of uncovered interaction pairs in IE). The 
selected test case is then added into τ. The corresponding β in IE 
are then eliminated before the system proceeds to propose next α. 
The τ is considered completely formed as all interaction pairs in IE 
are covered, indicating all interaction coverage from coverage 
requirements are included. 
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Table 2. Summary of parameter interactions groups. 
 

Types of interaction testing Parameter interactions groups Binary representations 

Input-output based relationship {ABC, DE} {11100, 00011} 

Uniform strength, CA (2, 2
5
) {AB, AC, AD, AE, BC, BD, BE, CD, CE, DE} {11000,10100, 10010, 10001, 01100, 01010, 01001, 00110, 00101, 00011} 

Variable strength, VCA (2, 2
5
 CA (3, 2

3
) { AB, AC, AD, AE, BC, BD, BE, CD, CE, DE, CDE} {11000,10100, 10010, 10001, 01100, 01010, 01001, 00110, 00101, 00011, 00111} 

 
 
 

Table 3. The resultant interaction pairs for coverage requirements ABC and DE. 
 

Parameter interaction ABC DE 

Parameter A B C D E A B C D E 

Interaction pairs 

a1 b1 c1 X X X X X d1 e1 

a1 b1 c2 X X X X X d1 e2 

a1 b2 c1 X X X X X d2 e1 

a1 b2 c2 X X X X X d2 e2 

a2 b1 c1 X X 

 
a2 b1 c2 X X 

a2 b2 c1 X X 

a2 b2 c2 X X 

 
 
 
Actual data mapping algorithm 
 
As existing strategies are focused on test suite 
minimization efforts; therefore, less intention has been 
drawn into the input-output mapping automation supports 
to map the test data from symbolic value to actual data 
form. Consequently, test engineers will have to manually 
perform the mapping process before the test suite can be 
used for testing execution phase or else some automated 
mapping efforts are still be required. In this scenario, 
AURA strategy has incorporated with this automated 
mapping concern as far as the test suite practicality is 
concerned. Specifically, the automated mapping support in 
AURA strategy is known as post-processing mapping 
system. In this case, the term of post-processing refers to 
the test cases generation process is prior to the automated 
input-output mapping process, which allows symbolic 
inputs to be executed on AURA strategy (instead of real 
values) and generates real value outputs via a predefined 
look-up table. It is noted that the look-up table is 

summarized by test engineers before they specify inputs 
(in symbolic values) to AURA strategy. Thus, this feature 
enhances the mapping automation support while 
maintaining the ease of data manipulation in test suite 
construction. In order to implement the post-processing 
automated input-output mapping system, AURA strategy 
employed Actual Data Mapping algorithm to support both 
symbolic values as well as actual data output generation. 
Figure 5 depicting the pseudo-code of ‘actual data 
mapping’ algorithm. In this case, AURA strategy generates 
symbolic values results which are similar output format as 
some other strategies possessed. Moreover, with this 
feature, AURA strategy is also capable to map back the 
test cases with their actual data based on the 
corresponding look-up table. 

To accomplish this aim, the actual data information from 
the look-up table is stored in σ as shown in Figure 5. Then, 
for the first test case in the τ, AURA strategy maps that test 
case, which is in symbolic values back into actual data 
form based on σ. After that, the test case (in actual data 

form) is then written into an output file, ‘ofile’. This mapping 
process is repeated until all test cases in the final test suite 
are converted. For instance illustration, Figure 6 shows a 
typical constructed test suite in terms of symbolic values 
and also the conversion from that to actual data based on 
our previous example. 

 
 
RESULTS AND DISCUSSION 
 
Here, we evaluate AURA strategy with current 
benchmarking input-output based relationship 
interaction testing strategies. As mentioned 
earlier, AURA strategy can support three 
distinctive types of interaction testing: 
 
input-output based relationship interaction testing, 
uniform and variable strength interaction testing.  
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Figure 4. Pseudo-code of test suite construction algorithm. 

 
 
 

 
 
Figure 5. Pseudo-code of actual data mapping algorithm. 
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Figure 6. Conversion from symbolic values to actual data for a typical test suite. 

 
 
 

Table 4. Comparison of different strategies for F1 = {310} and different size of R. 
 

|R| Density ParaOrder Union TVG AURA 

10 86 105 503 86 89 

20 95 103 858 105 99 

30 116 117 1599 125 132 

40 126 120 2057 135 139 

50 135 148 2635 139 147 

60 144 142 3257 150 158 

 
 
 
Therefore, three experiments are conducted 
accordingly.For the first experiment, 2 set of factors are 
chosen to represent the systems with fixed-level factors 
and mixed-level factors respectively in order to evaluate 
the effectiveness of AURA strategy on input-output based 
relationship interaction testing. The fixed-level factors are 
consisted of 10 factors (parameters) where each factor 
have 3 levels (options) and defined as F1 = (3

10
) whereas 

mixed-level factors are 3 factors of 2 options, 3 factors of 
3 options, 3 factors of 4 options and a factor with 5 
options and denoted as F2 = (2

3 
× 3

3 
× 4

3 
× 5). AURA 

strategy is then required to generate test cases for these 
factor sets based on predefined input-output interactions. 
The input-output interactions are built by selecting 
coverage requirements from a pool of coverage 
requirements in Wang et al. (2007); they are also 
attached in appendix of this paper. Based on these, there 
are 6 iterations in the experiment for each factor set. The 
first 10 coverage requirements are included for the first 
iteration and defined as |R| = 10. The input-output 
interactions are then been added with another 10 

following coverage requirements for consecutive iteration. 
Tables 4 and 5 have shown the generated test suites size 
from AURA strategy as well as other published 
strategies. Meanwhile, there are eight different input 
specifications (S1 to S8) of uniform strength interaction 
testing that commonly applied in other published 
strategies. Hence, AURA strategy is executed based on 
these and gave the test suite sizes as summarized in 
Table 6. As far as the benchmarking is concerned, 
existing variable strength interaction testing strategies 
tend to refer on the input specifications proposed by 
Cohen et al. (1997) and Myra et al. (2003b). Therefore, 
AURA strategy adopted these as the inputs for the last 
experiment. 

The results are depicted in Table 7. Before any further 
discussion is made, several experimental clarifications 
are deduced here. First of all, it is noted that all the 
results are obtained by using Windows XP with a 2.80 
GHz Core 2 Duo CPU and 2 GB RAM with Java (JDK 
1.6) installed. Besides that, the data from others work 
(that is Density, ParaOrder, Union, TVG, PICT, AETG, 
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Table 5. Comparison of different strategies for F2 = {23 x 33 x 43 x 5} and different size of R. 
 

|R| Density ParaOrder Union TVG AURA 

10 144 144 505 144 144 

20 160 161 929 161 182 

30 165 179 1861 179 200 

40 165 183 2244 181 207 

50 182 200 2820 194 222 

60 197 204 3587 209 230 

 
 
 
Table 6. Sizes of generated t-way combinatorial test suites (t = 3). 
 

 Density ParaOrder TVG PICT AETG GA ACA GA-N IPO-N IPO Jenny AURA 

S1 53 53 48 48 38 33 33 52 47 48 51 50 

S2 64 106 120 111 77 64 64 85 64 64 112 93 

S3 213 225 239 215 194 125 125 223 173 200 215 229 

S4 362 363 409 369 330 331 330 389 271 366 373 394 

S5 1592 1624 1949 1622 1473 1501 1496 1769 1102 1678 1572 1874 

S6 242 225 269 241 218 218 218 336 199 239 236 260 

S7 119 111 133 119 114 108 106 120 113 120 130 125 

S8 365 379 429 368 377 360 361 373 368 464 397 401 
 

(S1: 3
6
; S2: 4

6
; S3: 5

6
; S4: 6

6
; S5: 10

6
; S6: 5

7
; S7: 5

2
4

2
3

2
; S8: 10

1
6

2
4

3
3

1
). 

 
 
 
GA, ACA, GA-N, IPO-N, IPO, Jenny, SA and ACS) are 
collected from published articles in Myra et al. (2003b), 
Xiang et al. (2009) and Ziyuan et al. (2008). Since ACS 
strategy (Xiang et al., 2009) possesses randomness 
algorithm, and its results are obtained based on 200 
iterations; hence, AURA strategy also performed 200 
iterations throughout the experiments. As AURA strategy 
is non-deterministic in nature, 20 independent runs have 
been performed and the best results (with minimal test 
cases) of these runs are reported for each input. Lastly, 
no fair comparison for test cases generation time is able 
to be performed due to the differences or unspecified of 
computing environments in the published literatures. 
Thus, this aspect is excluded in our discussion. Based on 
Tables 4 and 5, ‘density’ produced smallest test suites for 
almost all inputs. However, AURA strategy also produced 
considerable results in this case. For instance, AURA 
strategy gave optimized test suite at |R| = 10 for F2 = (2

3
 

x 3
3
 x 4

3
 x 5) and produced better results than ParaOrder 

as well as TVG in some other cases. Particularly, AURA 
strategy always generates smaller test suites than Union 
for each input. By referring to Table 6, none of the 
reported strategies is accomplished to give the best 
results for all input configurations of uniform strength 
interaction testing. In addition, we discovered that there is 
no big gap in terms of test suites sizes constructed by 
AURA strategy with some classic algorithms. For some 
inputs, AURA strategy even produced better output than 
Density, ParaOrder, PICT, GA-N, IPO and Jenny. 
Meanwhile, AURA strategy generated smaller size than 

TVG for most of the inputs as well. Despite of the test 
suite optimality has been concerned, most of the existing 
uniform strength interaction testing strategies (AETG, 
GA, ACA, GA-N, IPO-N, IPO and Jenny) do not address 
capability of input-output interaction testing as well as 
variable strength interaction testing. 

Concerning variable strength interaction testing test 
suites as shown in Table 7, simulated annealing (SA) 
strategy is often effective in constructing small test suite 
size but it does not support input-output interaction 
testing. Besides that, it is worth to mention that AURA 
strategy frequently performed well against PICT as far as 
the size is concerned. In addition, AURA strategy is 
comparable in certain cases as compared to Density, 
ParaOrder and TVG, by generating smaller test suites. 
Moreover, there comprised of four input specifications at 
which AURA strategy produced optimized results that as 
optimized as SA strategy. They are namely: CA (3, 5

3
), 

CA (3, 4
3
) + CA (3, 5

3
) and CA (3, 5

1
6

2
) from VCA [m; 2, 

4
3
5

3
6

2
, (CA)] and also VCA (m; 2, 3

20
10

2
). Apart from 

supporting all forms of t-way testing possibilities (for 
example uniform strength, variable strength, and input-
output based relation) and generating competitive test 
size, the main contribution of AURA strategy is the fact 
that it provides seamlessly integration of input-output 
mapping of actual data values as part of the strategy 
itself. Comparatively, AURA strategy can be put side-by-
side with GTWay (Zamli et al., 2011). GTWay takes the 
preprocessing approach through the use of fault file to 
address its input-output mapping of actual data. Although  
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Table 7. Sizes of variable strength interaction testing test suites. 
 

{C} Density ParaOrder SA PICT TVG ACS AURA 

VCA(m; 2, 3
15

, {C}) 

Ø 21 33 16 35 22 19 21 

CA(3, 3
3
)
 

28 27 27 81 27 27 28 

CA(3, 3
3
)
2
 28 33 27 729 30 27 30 

CA(3, 3
3
)
3
 28 33 27 785 30 27 31 

CA(3, 3
4
) 32 27 27 105 35 27 35 

CA(3, 3
5
) 40 45 33 131 41 38 42 

 

CA(3, 3
4
) 

46 44 34 1376 53 40 50 CA(3, 3
5
) 

CA(3, 3
6
) 

 

CA(3, 3
6
) 46 49 34 146 48 45 46 

CA(3, 3
7
) 53 54 41 154 54 48 53 

CA(3, 3
9
) 60 62 50 177 62 57 62 

CA(3, 3
15

) 70 82 67 83 81 76 88 

 

VCA(m; 2, 4
3
5

3
6

2
, {C}) 

Ø 41 49 36 43 44 41 44 

CA(3, 4
3
) 64 64 64 384 67 64 64 

CA(3, 4
3
5

2
) 131 141 100 781 132 104 127 

CA(3, 5
3
) 125 126 125 750 125 125 125 

 

CA(3, 4
3
) 

125 129 125 8000 125 125 125 
CA(3, 5

3
) 

 

CA(3, 4
3
5

3
6

1
) 207 247 171 1266 237 201 224 

CA(3, 5
1
6

2
) 180 180 180 900 180 180 180 

CA(3, 4
3
5

3
6

2
) 256 307 214 261 302 255 287 

 

VCA(m; 2, 3
20

10
2
, {C}) 

Ø 100 100 100 100 101 100 100 

CA(3, 3
20

) 100 103 100 940 103 100 107 

CA(3, 3
20

10
2
) 401 442 304 423 423 396 586 

 
 
 

useful, this preprocessing approach introduces some 
timing overhead to parse the actual parameter values 
and to directly manipulate actual data for test generation. 
Particularly, it is reported that the overhead penalty 
incurred in GTWay is directly proportional to the number 
of defined base test cases (approximately 50 us per 
additional defined test). Unlike GTWay, AURA strategy 
adopts post-processing approach, that is, the mapping to 
actual values is achieved after generation via look-up 
tables. Thus, no time is wasted on loading fault file and 
parsing parameter. In this case, AURA strategy provides 
better mapping automation feature than GTWay. 

Furthermore, unlike existing strategies, the iterations of 
assigning additional set of random values and checking 
corresponding uncovered interaction pairs in AURA 
strategy can be controlled (that is the number of iterations 
is customizable). 

On one hand, when the optimality of test suite size is 
preferred than generation time, AURA strategy can 
increase the iterations looping number in order to 
generate more optimized test suite. On the other hand, 
AURA strategy can decrease the iterations looping to get 
fast test suite construction. This notable customization is 
useful to provide the flexibility for the users to decide their  
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preference (either the optimality of test suite or fast 
generation time). 
 
 
CONCLUSIONS 
 
This paper has discussed the development of a flexible 
input-output based t-way strategy called, AURA. 
Experimental data shown AURA strategy generally 
produces competitive test suites for all these inputs. 
Moreover, AURA strategy that implemented the post-
processing automation on converting back test suites into 
actual value form has alleviated the burden of software 
tester from mapping the test suites manually. In future 
work, more practical features such as seeding and 
constraint implementations shall be incorporated into 
AURA strategy to further enhance its reliability and 
usability. 
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APPENDIX 
 

The collection of coverage requirements in the 

experiment is shown as follows: there are 10 factors in 

both F
1 

and F
2
, which is F = {f

1
, f

2
, f

3
, f

4
, f

5
, f

6
, f

7
, f

8
, f

9
, f

10
}. 

These 10 factors could be denoted by their 

corresponding sequence numbers and described as F = 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} for short (Wang et al., 2007). 

 

Collection = {{1, 2, 7, 8}, {0, 1, 2, 9}, {4, 5, 7, 8}, {0, 1, 3, 
9}, {0, 3, 8}, {6, 7, 8}, {4, 9}, {1, 3, 4}, {0, 2, 6, 7}, {4, 6}, 
{2, 3, 4, 8}, {2, 3, 5}, {5, 6}, {0, 6, 8}, {8, 9}, {0, 5}, {1, 3, 
5, 9}, {1, 6, 7, 9}, {0, 4}, {0, 2, 3}, {1, 3, 6, 9}, {2, 4, 7, 8}, 
{0, 2, 6, 9}, {0, 1, 7, 8}, {0, 3, 7, 9}, {3, 4, 7, 8}, {1, 5, 7, 
9}, {1, 3, 6, 8}, {1, 2, 5}, {3, 4, 5, 7}, {0, 2, 7, 9}, {1, 2, 3}, 
{1, 2, 6}, {2, 5, 9}, {3, 6, 7}, {1, 2, 4, 7}, {2, 5, 8}, {0, 1, 6, 
7}, {3, 5, 8}, {0, 1, 2, 8}, {2, 3, 9}, {1, 5, 8}, {1, 3, 5, 7}, 
{0, 1, 2, 7}, {2, 4, 5, 7}, {1, 4, 5}, {0, 1, 7, 9}, {0, 1, 3, 6}, 
{1, 4, 8}, {3, 5, 7, 9}, {0, 6, 7, 9}, {2, 6, 7, 9}, {2, 6, 8}, {2, 
3, 6}, {1, 3, 7, 9}, {2, 3, 7}, {0, 2, 7, 8}, {0, 1, 6, 9}, {1, 3, 
7, 8}, {0, 1, 3, 7}}.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 


