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In this paper, we consider a total dispersion tensor in two-dimensional packed beds consisting of 
randomly placed parallel cylinders for porosities between 38% to 90%, Peclet numbers up to 100 and 
Reynolds number up to 20 based on the cylinder diameter and filtration speed. The effective dispersivity 
is measured by computing the concentration field for a uniform gradient of concentration parallel and 
normal to the applied pressure gradient. In order to obtain statistically significant ensembles, a 
sufficiently large number of realizations are generated by repacking the domain and recomputing the 
dispersivity for porosity, Peclet number and Reynolds number. A comparison is made with transient 
numerical data in which a fixed concentration is imposed at the boundary. For the Reynolds numbers 
examined here, inertial effects are depicts to produce a relatively smaller effect, often resulting in a 
decrease in the dispersivity for a Peclet number. Porosity strongly effects dispersion normal to the bulk 
flow.  
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INTRODUCTION 
 
The transport of a passive scalar (e.g., non-reacting 
species concentration) through a medium has important 
applications in many scientific and technological disci-
plines and has attracted interest in its own right. This 
dispersive phenomenon was initially modeled by Taylor 
(1953) for flow through a straight channel and the longi-
tudinal dispersivity was explicitly related to the square of 
the Peclet number. Carberry and Bretton (1958) depicted 
axial dispersion of mass in flow through fixed beds. 
Ebach and White (1958) investigated mixing of fluids 
flowing through beds of packed solids. Harleman and 
Rumer (1963) depicted longitudinal and lateral dispersion 
in an isotropic porous medium. Lee et al. (1996) reported 
that the predicted transverse dispersivity deviates signi-
ficantly (as a function of the Peclet number) from the 
measured values. 

Dispersion in disordered porous media haves been 
examined in numerous experimental studies [Gunn and 
Pryce (1969) and Han et al. (1985)]. Saffman (1959) 
investigated a modeled random porous  media  with  ran- 
domly oriented capillary tubes and found  Fickian  disper- 
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sion at long times with dispersivity approaching a Peaclet 
number. 

It is apparent that a systematic study of the effects of 
disorder and Reynolds number on the dispersion in dis-
ordered media is missing in the literature. Recent deve-
lopments in computational fluid dynamics have made it 
possible o perform direct numerical simulations of the 
laminar, interstitial velocity and concentration fields. This 
approach is taken here to investigate the role of disorder 
and fluid inertia on dispersion in randomly packed beds. 
Ancona, M.G. (1994) discussed Fully-Lagrangian and 
lattice-Boltzmann methods for solving systems of conser-
vation equations. For steady-state advection-diffusion 
problems, however, the time-marching Lattice Boltzmann 
method is computationally inefficient. Zanchini (2008) 
investigated mixed convection with variable viscosity in a 
vertical annulus with uniform wall temperatures. 
Avedissian and Naylor (2008) studied free convective 
heat transfer in an enclosure with an internal louvered 
blind. Chen and Lin (2007) investigated surface waves on 
viscoelastic magnetic fluid film below down a vertical 
column. Seddeek and Salem (2007) investigated the 
effect of an axial magnetic field on the flow and heat 
transfer about a fluid underlying the axisymmetric 
spreading surface with temperature  dependent  viscosity 



 
 
 
 
and thermal diffusivity. Kumar et al. (2009) studied an 
analytical study of viscous dissipation effects on MHD 
natural convection fluid flow along a sphere.  
 
 
Formulation of the problem 
 
In the present investigation, we are considering the Lattice 
Boltzmann method for the solution of the Navier-Stokes 
equations and other transport equations in the Porous 
effects. The method is developed for problems in which 
the velocity field is known and the uncoupled transient 
transport problem is to be investigated.  

As in the solution of the Navier-Stokes equations, the 
advection-diffusion problem is formulated in terms of the 
particle distribution function f i(x,t) , which is associated 
with the probability that a particle of solute will lie in the 
vicinity of x  at time t  that is moving with velocitye i . 
 
f i x, t( )∆V C t( ) = probability of finding a given solute 

particlein the volume interval ∆V  about x  at time t  
moving with velocitye i ,                                              (1)  
 
Where C t( ) is the total concentration of solute in the fluid 
at time t . For two-dimensions, communication with the 
four nearest neighbors is required and the microscopic 
velocity associated with each link is given by; 
 

ei =
∆x
∆t

cos
π i −1( )

2
,sin

π i −1( )
2

� 
� 

� 
� ,  i = 1,2,3, 4         (2) 

 
The concentration, φ  at location x  and time t  is found by 
taking a moment of the particle distribution, in direct 
analogy with the integral moment from kinetic theory: 
 

f i
i
� = φ .            (3) 

 
The particle distribution satisfies the Boltzmann transport 
equation in the Porous effects. The discrete velocity 
analog is given below; 
 
∂ f i

∂ t
+ e i ⋅ ∇f i = Ω i( f (x , t)) + Fi -u/k         (4) 

 
Where ( )( )txfi ,Ω  is a collision term which accounts for 
the addition and depletion of particles moving with velocity 
e i  due to particle collisions and k is porosity parameter. 
The term Fi  gives rise to a generation term and is 
defined such that: 
  

Fi
i
� = Φ                                      (5) 

 
where  Φ   is  the  imposed  mass  generation  term.  The 
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generation process does not directly enter into the flux of  
solute, the generation term is subject to the constraint, we 
have: 
 

Fie i
i
� = 0 .              (6) 

 

The discrete velocity Boltzmann, (4), is spatially and 
temporally discretized using a first-order Lagrangian 
discretization which yields: 
 
f i(x + ei∆t,t + ∆t) = f i(x,t) + Ω i( f (x, t))∆t + Fi∆t -k 

                                                               (7) 
 
Using the linearized, single time relaxation model 
(Bhatnagar et al., 1954) applied to lattice Boltzmann 
(Chen et al., 1991), the collision operator is written as: 
 

Ω i( f ) = −
1
τ

( f i − f i
(0 ))             (8) 

 

where f i
(0)  is an equilibrium distribution analogous to the 

Maxwellian distribution. Using this simplification, the 
Lattice Boltzmann evolution equation is written as: 
 

f i(x + ei∆t, t + ∆t) = f i(x, t) +
∆t
τ

f i
(0)(x, t) − f i(x,t)( )+ Fi∆t

+k                                                                         (9) 
 
It is useful to define a dimensionless relaxation time, 
τ * = τ ∆t and a modified generation term, Fi' = Fi∆t . 
Putting in (9) gives the final form of the Lattice Boltzmann 
evolution equation: 
 

f i(x + ei∆t, t + ∆t) = f i(x, t) +
1
τ* f i

(0)(x, t) − f i(x, t)( )+ Fi' +

k                                                           (10) 
 
Where the form of the generation term used in this study 
is given by; 

F1' = F2' = F3' = F4 ' =
Φ
4

∆t .                         (11) 

 

Since � is linear in velocity, the equilibrium distribution 
takes the form; 
 
f i

(0) = A + B ei ⋅ u( ),           (12) 
 
where u  is the known velocity field. The coefficients A 
and B are found by imposing the following constraints on 
the process of decay toward equilibrium. The collision 
process is required to conserve solute are: 
 

f i
(0)

i
� = φ .            (13) 

And also at equilibrium, the flux of solute is: 
 

f i
(0)

i
� e i = φu .                    (14) 
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Imposing these constraints leads to an equilibrium 
distribution of the form; 
 

f i
(0) =

φ
4

+
φ

2c2 e i ⋅u( )           (15) 

 
For two-dimensions, where c = ∆x ∆t  is the com-
putational speed of sound. The same considerations can 
be used to find the appropriate distribution for three-
dimensional analyses.  
 
 
Discretization error for advection-diffusion 
 
This section summarizes the derivation of the macro-
scopic advection-diffusion equation from the microscopic 
development of the previous section. The starting point is 
a multi-dimensional Taylor series expansion of the 
particle distribution about the point (x ,t) is given by: 
 

f σi x +
eσi

c
∆x, t + ∆t� 

� 
� 
� = f σi x, t( )+

1
n!

∆t( ) ∂
∂ t

+
∆x
c

eσi ⋅ ∇� 
� 

� 
	 

n

n=1

∞

� fσ i x , t( )

+k                                                                             (16) 
 
This expansion is substituted into the lattice Boltzmann 
equation, (10) to give, 
 

1
n!

∆t( ) ∂
∂t

+
∆x( )
c

eσ i ⋅∇� 
� 
 

� 
	 � 

n

n=1

∞

� fσ i x,t( ) =
1
τ* fσ i

(0) x,t( ) − fσ i x,t( )[ ]+ Fσ i
'

+k                                                                       (17) 
 
Here the expansion is in terms of a computational 
Knudsen number, which is defined as the time between 
collisions relative to the convective time scale of the flow 
are: 
 

, (18)                  

 
Where L U  is the convective time scale, with L and U as 
the characteristic length and velocity scales of the flow, 
respectively. The multi-scale expansions of the particle 
distribution and evolution time scales are described by: 
 
f σi = f σi

(0) + δ∆t f σi
(1) + δ∆ t

2 f σi
(2) +  . ..         (19) 

 
∂ t = ∂t 0

+ δ∆t∂t1 + δ∆t
2 ∂t 2

+  ...  ,        (20) 
 
Where ∂ t = ∂ ∂ t  is used to indicate the time derivative. 
Using   equation (20)  in  non-dimensional  form,  putting 
these expansions, collecting like powers of the Knudsen  
number and converting back in dimensional form provides  
 
(assuming1 τ * ~ O 1( ) ): 

 
 
 
 

O(δ∆t ):  ∂ to
+ e i ⋅ ∇( )f i

(0) = −
U

Lτ* f i
(1) + Fi         (21) 

 

O(δ∆t
2 ):  ∂ t1 f i

(0) −
L
U

τ* −
1
2

� 
� 

� 
� ∂ to

+ ei ⋅ ∇( )2
f i

(0 ) +
L
U

τ* −
1
2

� 
� 

� 
� ∂ to + ei ⋅ ∇( )Fi =  

−
U

Lτ* f i
(2) +k            (22) 

 
From equation (21) has been used to simplify (22). And; 
(23) 
 

O(δ∆t
2 ):  ∂ t1

φ −
L

U∆t
2τ* −1

4
∆x2

∆t

� 
� 
� � 

� 
∂αα φ −

L
U

τ* −
1
2

� 
� 

� 
� ∂ t0

∂α φuα( )= 0                    

                                                                                  (24) 
 
The conservation equation is obtained by combining 
these terms given; 
 

  ∂ tφ + ∇ ⋅ uφ( )= D∂αα φ + Φ + E + O ∆x 2 ,∆t 2( )     (25) 
 
where the diffusivity is given by, 
 

  
D =

2τ* −1
4

∆x2

∆t
.           (26) 

 
And the error E is given by, 
 

  E = 2D∆t∂t0
∂α φuα( ).           (27) 

 
This error term can be evaluated from several viewpoints. 
Using (23) it can be written in two other terms are; 
 

  E = 2D∆t ∂ t0
Φ − ∂ t0

2φ( ) 
 
Or, 
 

  
E = 2D∆t −∂α uα ∂β φuβ( )[ ]+ ∂α Φuα( )+ ∂α φ∂ t0

uα( ){ } 

                                                                       (29) 
 
Te expressed as shown in (27), the error term is first 
order in time, reducing the overall convergence of the 
method to first order with the time step.  
 
 
Boundary and initial conditions 
 
The particle distribution is found by determining the high 
order terms in the expansion expressed in (19). The 
lowest order term, the equilibrium distribution f σi

(0) , is 
given in (15). In order to find higher order terms, the hie-  
rarchy of equations given in (6) and (7) are used. In terms 
of the equilibrium distribution, the first order non-
equilibrium term is given by, 
 

f i
(1) =

Lτ *

U
Fi  −

Lτ*

U
∂t o

+ e i ⋅∇( )f i
(0) .       (30) 



 
 
 
 
This is expressed in terms of macroscopic quantities by 
substituting the equilibrium distribution and eliminating the 
time derivatives using (23) and (24). This yield, 
 

f i
(1) = −

∆tτ*

δ∆ t

−
1
4

∂β φuβ( )+
1
2

eiαeiβ

c2 ∂α φuβ( )� 
� 
 

� 
	 � 

−  

   
∆xτ*

δ∆t

1
4

eiα

c
∂αφ� 

� 
� 
	 

+ O
∆t2

∆x
� 
� 
� � 

� 
                                   (31) 

 

  
f i

(2 ) = −
∆tτ*D

δ∆t
2

1
4

∂ααϕ −
1
2

eiαeiβ

c2 ∂α∂βφ� 
� 
 

� 
	 � 

+ O
∆t2

∆x
, ∆t2 , ∆x2� 

� 
� � 

� 
                                        

                                                                                  (32)  
 
Substituting these expressions for the non-equilibrium 
contributions in the equation (19) gives the complete 
particle distribution function in terms of macroscopic 
quantities are; 
 

f i =
1
4

φ +
1
2

∆t
∆x

eiα

c
φuα − τ*∆x

1
4

eiα

c
∂αφ� 

� 
� 
	 

−

  
τ *∆t

1
4

∂ tφ +
1
2

eiαeiβ

c2 ∂α φuβ( )−
1
2

eiαeiβ

c2 D∂α ∂βφ� 
� 
 

� 
	 � 

+ O
∆t 2

∆x
,∆t 2,∆x2� 

� 
� � 

� 
 

                                                                                  (33) 
 
where, alternatively, the time derivative term could have 
been expressed in terms of spatial gradients using the 
governing equations, we have; 
 

  ∂ tφ = −∂α φuα( )+ D∂ααφ .         (34) 
 
The four components of the particle distribution are thus 
given by, 
 

  
f1 ≈

1
4

φ +
1
2

∆t
∆x

φux − τ *∆x
1
4

∂xφ
� 
� 

� 
	 

− τ*∆t
1
4

∂ tφ +
1
2

∂x φux( )−
1
2

D∂xxφ
� 
� 

� 
	 
            

                                                                               (35a) 
 

  
f 2 ≈

1
4

φ +
1
2

∆t
∆x

φuy − τ *∆x
1
4

∂yφ
� 
� 

� 
	 

− τ *∆t
1
4

∂ tφ +
1
2

∂ y φuy( )−
1
2

D∂ yyφ
� 
� 

� 
	 
                  

                                                                                (35b) 
 

  
f 3 ≈

1
4

φ −
1
2

∆t
∆x

φux + τ *∆x
1
4

∂xφ
� 
� 

� 
	 

− τ *∆t
1
4

∂ tφ +
1
2

∂x φux( )−
1
2

D∂xxφ
� 
� 

� 
	 
                                                                            

                                                                           (35c) 
 

  
f 4 ≈

1
4

φ −
1
2

∆t
∆x

φuy + τ*∆x
1
4

∂yφ
� 
� 

� 
	 

− τ *∆t
1
4

∂ tφ +
1
2

∂y φuy( )−
1
2

D∂yyφ
� 
� 

� 
	 
                                                                              (35d) 

 
Whereφ  is the local concentration. Other components 
which are particularly useful for the prescription of boun-
dary conditions is given by: 
 

f i
i
� eiα ≈ φuα −

τ *∆x2

2∆t
∂αφ .          (36) 
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Computational determination of effective dispersivity 
 
For solving dispersion in packed beds and other problems 
in which the macroscopic behavior is of more interest 
than the microscopic details, it is desirable to formulate 
an equation which describes the macroscopic phenol-
mena. This macroscopic convection-diffusion equation 
can be derived by averaging over many pore sizes are, 
 

∂φ f

∂ t
+ ∇ ⋅ u f φ f( )= D:∇∇φ f          (37) 

 

Where ψ f  denotes an intrinsic average performed over 
the fluid phase and defined by, 
 

ψ f =
1
V f

ψdV f� =
1

εVT

ψdV f� = ψ ε ,        (38) 

 
Where ψ  is any scalar or vector quantity and V f  is the 
volume occupied by fluid. However, this equation involves 
the unknown total dispersion tensor D . 
 
 
Calculation of effective dispersivity by uniform 
macroscopic concentration gradient 
  
The steady-state concentration is defined as the flux 
function of a vector field B  and corresponds to the 
solution of the advection-diffusion problem when a 
uniform macroscopic concentration gradient is applied 
[Bronner, 1980]. The periodic field ˜ B x( ) = B x( )− x  of 
Brenner (1980) is determined from the steady-state 
vectorial convection-diffusion equation given by, 
 

           (39) 
 

Where u' = u − u f  is the difference between the local 
velocity and the intrinsic average velocity, u f . The 
concentration gradient is zero at all fluid-solid boundaries 
which yields the following boundary conditions, 
 

n ⋅∇ ˜ B = n                         (40) 
 
Where n  is the outward normal of the particle, directed 
into the fluid. Periodic boundary conditions are applied at 
the edges of the computational domain. The local concen- 
tration fluctuation,φ ' = φ − φ f  is calculated from B  for a 
uniform macroscopic concentration gradient according to, 
 

φ ' = −B ⋅ ∇φ f
.           (41) 

 
The effective dispersivity is given below; 
 

Dαβ = D Iαβ +
1

V f

nα
˜ B βdA

As− f

�
� 

� 

 

� 

	 
� +u'α

˜ B β
f

,        (42) 
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And  
 

Dαβ = D Iαβ + ∂ γ
˜ B α  ∂ γ

˜ B β
f

− ∂α
˜ B β  ∂β

˜ B α
f� 

� 
� 
	 

.    (43) 

 
The steady-state advection diffusion type equation and 
boundary conditions are given in (39) and (40) is solved 
using a staggered grid, finite-volume formulation utilizing 
velocity fields investigated by the lattice Boltzmann 
method.  
 
 
Dispersion in a channel 
 
The equations (39) and (40) have  an  exact  solution  for  
the dispersion of a passive scalar in a channel. To 
calculate the longitudinal dispersivity, the Poiseuille flow 
solution is substituted into the advection-diffusion equa-
tion and (40) is applied in the form of insulating boundary 
conditions at the upper and lower walls. Putting the 
resulting expression for ˜ B  into either (42) or (43) gives 
the solution first derived by [Wooding (1960)]; 
 

  
Dxx = D 1 +

Pe2

210
� 
� 
� � 

� 
,         (44) 

 
Where the Peclet number here is based on the width of 
the channel, h and the mean velocity through the 
channel. 

Figure 1 depicts that the relative error in the finite 
volume results is plotted as a function of grid size. The 
slope of the relative error with grid size shows that both 
methods converge with the square of the grid size. 
However, Figure 1 depicts shows that the discrete version 
of (42) gives results that are significantly more accurate 
than those from (43).  
 
 
Effective conductivity in randomly packed beds 
 
The remainder of the results  in  this  work  are  found  by 
solving the steady-state advection diffusion equation 
given in (39) and (40) followed  by  the  calculation  of  the 
total effective dispersion tensor according to (42). For no 
flow conditions, the dispersion problem posed in (37) 
becomes a conduction problem which can be described 
by, 

  

∂φ 
∂ t

= keD∇2φ f ,            (45) 

 
Where the effective conductivity ratio,ke , is found from 
the effective dispersion tensor which is isotropic for sta-
tionary conditions. The relationship between the effective 
conductivity ratio and dispersivity obtained by comparing 
(37) and (45) is; 
 

  ke = εDxx D = εDyy D .          (46) 

 
 
 
 
The effective conductivity is compared to results by Cruz 
and Patera (1995) in Figure 2. Because each realization 
exhibits slight anisotropy due to random fluctuations, the 
lateral and transverse dispersivities differ slightly. The 
averages of these two measures of the dispersivity at 
zero flow are used to compute the effective conductivity 
plotted in Figure 2. It is noted that for the cases examined 
here, the two measures of the dispersivity agree to within 
1.5% of the average value. The agreement with the 
results of Cruz and Patera (1995) is very good despite the 
fact that the previous results are for a random array of 
circular cylinders while the current results are for 
octagonal cylinders. 
 
 
RESULTS AND DISCUSSION 
 
The comparison is made for one sample of the medium 
with porosity of 64% at a Peclet number of 5 based on the 
filtration speed and obstacle size. The concentration 
profiles obtained from the unsteady simulations are 
compared to those predicted by the macroscopic equa-
tions using the dispersion coefficients found for the same 
geometry from the steady ˜ B  analysis. Along the side of 
each of these figures is a bar which indicates the intrinsic 
averaged concentration. This concentration is calculated 
by averaging along lines normal to the macroscopic 
concentration gradient. These profiles, as a function of 
time, are compared to solutions of (37) in Figures. (3) and 
(4). The agreement between the solution of the macro-
scopic equations and the transient solute simulations are 
very good. One discrepancy between the results is the 
seemingly lower effective diffusivity exhibited by the 
transient simulations, especially for shorter times. This 
discrepancy is in complete agreement with findings of Gill 
and Sankarasubramanian (1970) which depicted that the 
dispersion coefficient increases with time until reaching its 
asymptotic result. Computationally this requires an  even  
longer  domain  and  the cost becomes prohibitive. These 
results depict the asymptotic agreement between mea-
surements of the effective diffusivity coefficients by 
transient data and long-time ˜ B  computations. 
 
 
Effect of Reynolds number on dispersivity 
 
The remainder of the results in this work are found by 
solving the steady-state advection diffusion equation given 
in (39) and (40) followed by the calculation of the total 
effective dispersion tensor according to (42). The balance 
between advection and diffusion is governed by the 
Peclet number and this clearly is the most dominant 
parameter for characterizing a dispersive process. It is 
also known that the Reynolds number can independently 
affect dispersivity by restructuring the flow. Most investi-
gations of dispersivity have not considered inertial effects, 
solving rather the Stokes equations followed by the 
convection-diffusion equation. Investigations of inertial 
flows   utilizing  regular  periodic  media  have  stated  that 



Kumar et al.          1397 
 
 
 

 
 
Figure 1. Relative error in calculated values of the longitudinal dispersivity as a function of grid 
size for Poiseuille flow.  

 
 
 

 
 
Figure 2. Effective conductivity of two-dimensional packed beds consisting of randomly 
located parallel octagonal cylinders as a function of porosity.  
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Figure 3. Comparison of longitudinal dispersivity measurements with transient numerical 
data.  

 
 
 

 
 
Figure 4. Comparison of transverse dispersivity measurements with transient 
numerical data.  
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Figure 5.  Effect of inertia on longitudinal and transverse dispersivity.  The porosity is 
fixed at 64% and the Reynolds number is varied. 

 
 
 
Reynolds number is a minor effect, modifying results by at 
most 10% (Eidsath, 1981). Figure (5) depicts that the 
longitudinal and transverse dispersivities as a function of 

Peclet number,PeD , based on the filtration speed and the 
obstacle size 

As for the dependence of dispersivity on Reynolds 
number for Peclet number, it is shown in Figure 5 the 
effect is small, at least over the range investigated. 
Increasing Reynolds number does not necessarily 
increase dispersion at a Peclet number. In fact, the small 
effect that Reynolds number does have is generally to 
decrease dispersivity slightly. Investigations of the velocity 
distribution in packed beds indicate that as the Reynolds 
number increases (laminar flow), the velocity field tends 
to homogenized to some degree. The flow rate in the high 
speed regions of the flow increase more slowly than those 
in the low speed regions. This results in a narrower 
distribution of velocities in the porous medium.  
 
 
Effect of disorder on dispersivity 
 
Figure 6 compares the Peclet number dependence of 
dispersivity for ordered and disordered media. The 
ordered medium has a porosity of 51% and consists of a 
regular array of inline cylinder which is octagonal in cross-
section. All of the data obtained for randomly packed 

beds is also included. The transverse dispersivity shows a 
great deal of spread for the various cases. In all cases, 
however, the transverse dispersivity for dis-ordered media 
shows a steady increase with Peclet number and greatly 
exceeds that of the regular medium. 

Simulations have shown that the dispersivity increases 
with the square of the Peclet number over an extended 
range of Peclet numbers. Figure 6 depicts that, in 
comparison to regular media, disordered media show an  
increase in longitudinal dispersivity at lower Peclet 
numbers. The rate of increase, however, levels off while 
the growth rate for the regular media increases approach-
ing the quadratic dependence.  
 
 
Comparison with existing experimental data 

   
Figures (7) and (8), respectively, show the computed 
longitudinal and transverse dispersivity in packed beds for 
all Reynolds numbers and porosities along with numerous 
experimental data and a curve for the periodic array of 
octagonal cylinders.  The porosity of the experimental 
data is between 0.339 and 0.645.  In order to compare to 
previous results, the data is plotted as a function of the 
particle Peclet number. For longitudinal dispersivity, 
shown in Figure (7), the simulation results band around 
the   experimental   data   with   the  38%  porosity  results  
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Figure 6.  Effect of disorder on longitudinal and transverse dispersivity. 

 
 
 

 
 
Figure 7. Comparison of present longitudinal dispersivity and experimental data.  
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Figure 8. Comparison of present transverse dispersivity and numerical data. 

 
 
 
bounding the upper edge of the data and the 90% 
porosity data bounding the lower edge.  The transverse 
dispersivity comparison in Figure (8) shows equally good 
agreement at low porosities.  Simulations with 38% or 
50% porosity compare well with the experimental data, all 
of which was obtained over the same general range of 
porosity.  At higher porosities, the transverse dispersivity 
is dramatically under predicted, with the 90% porosity 
medium approaching the behavior of the periodic array of 
cylinders. 
 
 
Conclusions 
 
Simulations of interstitial transport illuminate the role of 
inertia and disorder on dispersion. For the Reynolds 
numbers up to Re D=16 based on the cylinder diameter 
and filtration velocity, inertial effects are shown to produce 
a relatively small effect. It is not computationally feasible 
at this time to perform high Reynolds number simulations 
in domains which satisfactorily describe packed beds. 
The authors describe this enhancement to dispersion 
which arises from growing distance between the solute 
being advected with the fluid and the slowly diffusing 
solute contained in hydro dynamical isolated regions. As 
the size of recirculation zones grow, this effect may lead 
to an eventual increase in dispersivity with Reynolds 
number for a Peclet number. Porosity and disorder are 

seen to play an important role in transverse dispersion 
normal to the bulk flow. The high speed inclined jets of 
fluid which are formed in closely packed geometries by 
the impingement of streamwise jets on constricted 
regions give rise to much greater transverse dispersion 
than that observed for higher porosity or ordered media. 
The histograms of the transverse component of velocity 
show that the velocity normal to the pressure gradient can 
exceed the streamwise filtration speed by an order of 
magnitude for low porosity media (38%) while it rarely 
exceeds twice the filtration speed   for  high  porosity  
media  (90%).  The porosity  is  
seen to have much less effect on longitudinal dispersion 
than on transverse dispersion. 
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