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The behaviour of lintel beam-to-shear wall connections plays an important role in the analysis of shear 
walls with openings. A computer-based method was prepared for nonlinear frames comprised of lintel 
beams having fully rigid end sections flexibly connected to wide column members accounting for shear 
deformations. The analytical procedure employed stability functions to model the effect of axial force 
on the stiffness of members. The modified member stiffness matrix and the fixed end forces for various 
loads were found. The nonlinear analysis method was applied for a model shear wall problem. The 
method is readily implemented on a computer using matrix structural analysis techniques and is 
applicable for the efficient nonlinear analysis of frameworks. 
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INTRODUCTION 
 
The effects of both geometrical and material 
nonlinearities and the semi-rigid connections on the 
overall behaviour of framed structures have attracted a 
great deal of attention from designers and researchers in 
recent years. These nonlinear effects are particularly 
important for the design of certain type of structures. 

When designing frames it is customary to assume that 
joints are either: 
 
(i) pinned-implying no moment transfer, or 
(ii) rigid-implying complete rotational continuity. 
 
The notions of either pinned or rigid joints are, however, 
simply extreme cases of true joint behaviour, and 
experimental investigations, many of which are referred 
to by Jones et al. (1983), show clearly that actual joints 
exhibit characteristics over a wide spectrum between 
these    extremes.   The  models  with   ideal  connections 
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simplify analysis procedure, but often cannot represent 
real structural behaviour. This discrepancy is reported in 
numerous experimental investigations of steel frames 
with different types of connections. The rigid connection 
idealization indicates that relative rotation of the 
connection does not exist and the end moment of the 
beam is entirely transferred to the columns. In contrast to 
the rigid connection assumption, the pinned connection 
idealization indicates that any restraint does exist for 
rotation of the connection and the connection moment is 
zero. Although these idealizations simplify the analysis 
and design process, the predicted response of the frame 
may be different from its real behaviour. Therefore, this 
idealization is not adequate as all types of connections 
are more or less, flexible or semi-rigid. It is proved by 
numerous experimental investigations that have been 
carried out in the past (Moree et al., 1993). The term 
semi-rigid is used to express the real connection 
behaviour. Therefore, beam-to-column connections in the 
analysis/design of frames should be described as semi-
rigid connections. 

Generally, nodal connections of plane frames are 
subjected to influence of bending  moments,  axial forces 



 
 
 
 
and shear forces. The effects of axial and shear forces 
can usually be ignored, and only the influence of bending 
moments is of practical interest. The constitutive 

moment-relative rotation relation, M-, depends on the 
particular type of connection. Most experiments have 

shown that the M- curve is nonlinear all the whole 
domain and for all types of connections. Therefore, 
modelling of the nodal connection is very important for 
the analysis and design of frame structure. 

Based on experimental work due to static monotonic 
loading tests carried out for various types of beam-to 
column connections, many models have been suggested 
to approximate the connection behaviour. The simplest 
and the most common one is the linear model that has 
been broadly used for its simplicity (Monforton and Wu, 
1963; Gorgun, 1992; Chan and Zhau, 1994). This 
approach is based on modelling the connection as a 
lengthless rotational spring. This method is widely used in 
semi-rigid analysis of frames, and the implementation of 
this approach requires small modifications in the existing 
analysis programs. This modification doe not 
considerably increase the computational time. Therefore, 
each element of the frame consists of a finite length 
element with a lengthless rotational spring. However, this 
model is good only for the low level loads, when the 
connection and member moments are quite small. In 
each other case, when the connection and member 
rigidities decrease compared with its initial values, a 
nonlinear material model is necessary. Several 
mathematical models to describe the nonlinear behaviour 
of connections and materials have been formulated and 
widely used in research practice (Wu and Chen, 1990). 
Often, many authors use the so called corrective matrices 
to modify the conventional stiffness matrices of the 
beams with fully fixity at both ends (Romstad and 
Subramanian, 1970; Frye and Morris, 1975; Yu and 
Shanmugam, 1986). Elements of the corrective matrices 
are functions of the particular nondimensional 
parameters-fixity factors, or rigidity index. In Simoes 
(1996), such an approach is used in the context of the 
optimization of steel frames with semi-rigid connections. 

In addition to the linear behaviour, many studies have 
been developed to the nonlinear analysis of the static and 
dynamic behaviour of frames with semi-rigid connections 
using different models of geometrical and material 
nonlinearities of elements and nodal connections 
(Sekulovic et al., 2002; Kameshki and Saka, 2003). In 
most studies, the effect of shear deformation and axial 
force on elastic behaviour has been ignored as being of 
little consequence. However, there are steel frameworks 
for which shear effects may be significant (for example, 
those that have deep transfer girders (Hall and Newmark, 
1957; Dincer, 1989; Timoshenko and Gere, 1961; 
Aristizabal-Ochoa, 2012). Also, in the analysis of 
structural systems the members forming the planar 
frames are generally assumed to be rigidly connected 
among  each  other.  However,  more  often  than  not the 
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assumption of pin connections is also employed in such 
cases where the rigidity of the connection cannot be 
provided to a dependable degree. In fact, both of the 
foregoing assumptions are unrealistic when one is 
treating steel frames and especially, nowadays, widely 
used precast reinforced concrete structures. In such 
structures beams and columns behave as if they are 
semi-rigidly, or flexibly, connected among themselves, as 
far as the rotations of the ends are concerned. Hence, 
experimentally determined effective rotational spring 
constants for those connections should be used in the 
analyses of such structures. This paper presents a 
computer-based method for geometrically and materially 
nonlinear analysis of planar frameworks with semi-rigid 
connections based on Timoshenko beam theory so as to 
explicitly account for the influence of shear deformation 
and the axial force on elastic behaviour (Timoshenko and 
Gere, 1961). Stability functions are employed to model 
the effect of axial force on the elastic bending stiffness of 
members, and the influence of semi-rigid connections is 
taken into account. The shear-stiff stability functions 
presented in Livesley and Chandler (1956) and Chen and 
Lui (1991) are modified to take shear deformability into 
account. The history of the stability functions for shear-
flexible members is given in Al-Sarraf (1986) and 
Mottram (2008). 

The geometrically and materially nonlinear elastic 
analysis procedure is a direct extension of the 
conventional matrix displacement method of linear-elastic 
analysis. The nonlinear analysis method is verified for an 
example structure from the literature (Dincer, 1989). 

The present study is an attempt to prepare a computer 
program that treats the aforementioned type of structures 
elegantly, taking into consideration the behaviour of the 
flexible connections, rigid end sections and the influence 
of shear deformations on elastic behaviour along with the 
effect of geometrical and material nonlinearities due to 
the axial forces in the members. As is well known, the 
upper limit of the load in any structure is the critical value 
of the load, the buckling load, which is found by taking 
geometric and material nonlinearities into consideration. 
Hence, the results of the present study will constitute the 
basis of the stability analysis of the same type of 
structures. 

In the present study a thorough analysis of planar 
frames and pierced shear walls has been carried out 
using the well-known stiffness method of structural 
analysis and a second order approach with material 
nonlinearity, taking into consideration, not only the effects 
of bending and axial deformations, but also those due to 
shear as well. The geometrical nonlinear analysis of 
plane frame in literatures is extended in this study to 
include the material nonlinearity. The section properties 
used for the formation of the stiffness matrix should also 
be updated using the effective section properties (EI)eff 
and  (EA)eff.  First,   the   stiffness   matrix of a member 
elastically supported against rotation at both ends having 
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rigid end sections is obtained using the second order 
analysis. Then, the fixed end forces are found for a 
member elastically supported at the two ends by 
rotational springs for a uniformly distributed load, a 
concentrated load, a linearly distributed load, a 
symmetrical trapezoidal distributed load and an 
unsymmetrical triangular distributed load. For the latter 
analysis, the second order theory was employed once 
again, along with the use of differential equations which 
yielded trigonometric functions for the case of axial 
compressive force and hyperbolic functions for the case 
of axial tensile force. 

A computer program has been prepared for 
applications. Results found in the literature by other 
methods have been obtained by a straightforward 
application of this computer program and there is a 
perfect match between the results of previous studies 
and those of the present one. 

The computer program that was prepared can be used 
to solve static problems of planar frames composed of 
members that are flexibly connected at the nodes having 
rigid end sections. 
 
 

ANALYSIS MODEL 
 
The present study concerns planar frameworks 
discretized as an assembly of beam-column members 
that beams having rigid end sections, flexibly connected 
to columns taking into account the effect of shear and 
axial deformations. It is assumed that there are no out-of-
plane actions, and bending, shearing or axial deformation 

(,  or ) under the action of moment, shear or axial 
force (M, V or P) is concentrated at member sections. 

This study is mainly composed of two parts. The first 
part is comprised of the analytical study that employs the 
matrix method which is commonly used in structural 
analysis. In this part, the stiffness matrix of the structure 
of concern is obtained, the contributions of different types 
of loads to the loading vector are found and the 
formulation of the equilibrium equations for the 
determination of the unknown displacements is 
explained. Actually, besides the more complicated type of 
functions compared to linear analysis, there is also a 
need for separate analyses for compressive and tensile 
axial forces which doubles the analytical work. In the 
second part of the study the pertinent computer program 
was prepared. 

In the present study, the method used being the matrix 
stiffness method the main concern is to set up the 
relation between the loading and the displacement 
vectors of a given structure. 

To accomplish this, the first thing to be done is to find 
the relation between the end forces and the end 
deflections for a prismatic planar beam-column member. 
The terms “force” and “deflection” are taken to be general 
expressions signifying direct forces and moments, and 
linear deflections and rotations respectively. Towards this 

 
 
 
 
end we must first define the sign convention and notation 
which is done in Figure 1a and b where positive senses 
of the entities at the two ends in the axial, transverse and 
rotational directions are shown with the arrows numbered 
from one to six. The left and the right ends of the member 
are also shown along with the corresponding spring 
constants, which express the ratio of flexural stiffness of 
connection to flexural stiffness of beam to which it is 
attached. The lengths of the springs are supposed to be 
zero. The physical properties of the member are 
designated in the conventional manner-E, G, L, I, A and 
As denote Young’s modulus, shear modulus, length, 
cross-sectional moment of inertia, cross-sectional area 

and equivalent shear area respectively; while 
ip , 

id  

and
if  ( 1i , 2,…, 6) are local axis member-end forces, 

deformations and fixed end forces, respectively. 
1k  and 

2k  are the constants of the rotational springs at the left 

and the right ends, respectively, The member is perfectly 
straight, and uniform in cross-section throughout its 
length. The material of the member is linearly elastic. 

 
 
Modified stiffness matrix of a flexibly connected 
member 

 
In order to obtain a force-displacement relationship of a 
beam-column member with semi-rigid connections, the 
superposition method cannot be applied. The force-
deformation relationship for the beam-column member in 
Figure 1a and b is: 

 
p kd f                                                           (1) 

 
Where the vectors of end-section forces 

 1 2 6, ,...
T

p p p p , deformations  1 2 6, ,...
T

d d d d  

and fixed end forces due to intermediate loads between 

joints  1 2 6, ,...
T

f f f f  are referenced to the local-axis 

system for the member, and the local-axis stiffness matrix 

k  for the member is a six by six matrix. The shear 

contribution in the entire deflection of a beam element as 
treated in the ordinary small deflection elastic theory is 
very simple; and, it is very small compared with the 

flexural deflection. Letting  m sy y y  show the entire 

downwards deflection of a beam-column member in 
Figure 2, the deflection due to bending only is shown by 

my  and that due to shear is shown by sy , and x  show 

the distance from the left end of the member, one can 
find the different elements of the stiffness matrix by taking 
each and every end displacement to be unity at a time, 
when the others are zero and solving the differential 
equation.
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Figure 1(a). Beam-column member model. 
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Figure 1(b). Beam-column member model with rigid end sections. 
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Figure 1. (a) Beam-column member model and (b) Beam-column member model with rigid end sections. 

 
 
 

 

Figure 2. Directions and positive senses of various end properties. 
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Figure 2. Directions and positive senses of various end properties. 

 
 
 

 1
     


m s

s

M
y y y

EI P GA
                                (2) 

 
Where a prime shows a derivative with respect to x  and 

EI  is the flexural rigidity of the member. 

When there is an axial force P , the bending moment 

M  at some representative point R in Figure 2, distant x  

from the left-hand end: 
 

1M Py Vx m                                     (3) 

 

Where P  is the absolute value of the axial force in the 

member and the sign in front of it in equation (3) is 

positive for compression and negative for tension, V  is 

the end shear force, 1m  is the modified fixed end 

moment at 0x , defining: 

 

 

 

   0
1

   0
1

s

s

P EI
P

P GA

P EI
P

P GA







 



 

                                        (4) 

 
The general solution of equation (2) is: 
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    1sin cos   
mV

y A x B x x
P P

                     (5) 

 

for axial compressive force. 
 When the axial force is tensile and the first term in the 
bending moment expression in equation (3) changes 
sign, then the general solution of equation (2) is again 
given by equation (5) only changing the signs of the last 
two terms and the trigonometric functions to their 
corresponding hyperbolic ones. Assigning the unit end 
displacements to the outer ends of the springs, each at a 
time and using the equilibrium equations for the free body 
diagrams of the members along with equation (5) and the 
suitable boundary conditions for the displacements and 
slopes at the inner ends of the springs, the local–axis 
stiffness matrix for the member is: 
 

11 14 11 11

22 23 25 26 22 23 22 26

33 35 36 23 33 23 36

44 11 11

55 56 22 23 22 26

66 26 36 26 66

0 0 0 0 0 0 0 0

0 0 0

0 0 0

0 0 0 0 0 0

0 0

0 0

k k k k

k k k k k k k k

k k k k k k k
k

k k k

Sym k k k k k k

k k k k k

   
   


   
   

    
   

     
   

      

     (6) 

 

The effects of the flexible connections are included in the 
stiffness matrix by modifying the stiffness terms of frame 
member with rigid connections. The stiffness influence 

coefficients   1,2,...6 : 1,2,...6 ijk i j  in equation (6) 

take into account the influence that axial force, shear 
deformations, rigid end sections, and semi-rigid 
connections have on elastic bending stiffness and are 
defined as follows (detailed derivations are given in 
equation 36): 
 

11 11 44 14 41

a EA
k k k k k

L
               (7a) 

 

1
22 22 55 25 523

r EI
k k k k k

L


      


       (7b) 

 

2
23 23 32 35 532

r EI
k k k k k

L


      


       (7c) 

 

3
26 26 62 56 652

r EI
k k k k k

L


      


       (7d) 

 
 

4
33 33

r EI
k k

L


 


              (7e) 

 

5
36 36 63

r EI
k k k

L


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
                (7f) 

 

6
66 66

r EI
k k

L


 


                  (7g) 

 
the modified local–axis stiffness matrix for the member is, 

 
 
 
 

31 2 1

3 2 3 2
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2 2
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    (7h) 

 

In equation (7a), 11 /ak EA L  is elastic axial stiffness. In 

equations 7b to g, the stiffness influence coefficients; 

when axial force P  vanishes (linear solution), 0P   
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12
1r EI

k
L

  


                      (8) 

 

 23 22

6
1 2r EI

k
L

 


               (9) 

 

 26 12

6
1 2r EI

k
L

 


              (10) 

 

  33 2

4
1 3r EI

k
L

  


             (11) 

 

 36

2
1 6r EI

k
L

 


              (12) 

 

  66 1

4
1 3r EI

k
L

  

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for the case of axial compressive force, 0P  , 
 

    3 2 2

22 1 2 1 23
1 sin cosr EI

k
L

            
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 2

23 22
sin cos 1r EI

k
L

  

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 2

26 12
sin cos 1r EI

k
L

  

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  2
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L
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k
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66 11 sin cosr EI
k

L
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and for the case of axial tensile force; 0P  , 
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account for elastic bending stiffness. 

In equations 8 to 25, the parameters: 
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in which, 
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are well-known stability functions that account for the 
influence of axial force on elastic bending stiffness. The 
effect of axial forces on the deformed shape of the 
member are included in the stiffness matrix by using 
modified stability functions. 

Finally, in equations 27 and 28, the dimensionless 
parameters for the ends, 1 and 2, of the member, 
 

1
1

4


J
k

EI L
                    (31) 

 

2
2

4


J
k

EI L
                    (32) 

 

Where 1J  and 2J  are the rotational stiffness of the 

flexible connections at the ends of the member and 

4EI L  is the stiffness of the member (defined only as 

the moment required to cause unit rotation of one of its 
ends). 
 


M

J


                 (33) 

 

This assumes a linear moment-rotation relationship and 

the connection stiffness, J , is the slope of this 

relationship. The values of 1k  and 2k  depend on the 

known semi-rigid connection stiffness and the 
geometrical and elastic properties of the connected 
member. They vary from zero for a frictionless pin 
connection to infinity for a perfectly rigid connection. 
Equations (31) and (32) are for the general case of 
unequal connection stiffness. Usual steel building frames 
will have identical connections at both girder ends, 
although exterior and interior connections may act 
differently, and the analysis will then deal with equal 

stiffnesses, 
1 2J J J  . 

 
 

Modified stiffness matrix of a member with rigid end 
sections 
 

Shear walls are usually connected by beams and for the 
purposes of analysis we have to find the stiffness of such 
a beam corresponding to coordinates at the wall axis. In 
the simplified analysis, walls with a row of openings are 
idealised to a frame composed of two wide columns 
connected by beams with end parts infinitively rigid. 
Consider the beam i*j* of Figure 1b. We assume that the 
beam has two rigid parts i*i and j*j. The rotations at the 
wall axis and at the other end of the rigid part will be the 
same. Also because of rigid part axial displacements 
should  be  the  same  for  each  end. Rigid part will have 



2396          Sci. Res. Essays 
 
 
 
rigid-body movement. Here it is assumed that the relative 
rotation of the beam and the wall face at the joint would 
not be zero. 

In the present study all four kinds of the 
abovementioned properties are treated at the same time, 
namely, rigid end sections, second order effects, the 
effects of shear deformations, and the effects of semi-
rigid connections. Figure 1b shows a member with rigid 
end sections and semi-rigid connections. Here, i* and j* 
show the ends of the member including the rigid end 
sections. They represent the points on the axes of the 
high beams or wide shear walls on the two sides of the 
member. i and j show the points where the elastic part of 
the member ends, representing the points on the surface 
of the high beams and wide shear walls where semi-rigid 
connections take place. The rotations and the 
translations, parallel to the axis of the member, at the 
ends of either rigid section are equal to each other. 
Hence, it can easily be proved that the stiffness matrix of 
member i*j* is also symmetrical and its elements which 
are different from those of member ij can be found as 
follows: 
 

11 11

* *

22 23 22 26

* * * *

23 33 23 36*

11 11

* *

22 23 22 26

* * * *

26 36 26 66

0 0 - 0 0

0 0 -

0 0 -

- 0 0 0 0

0 - - 0 -

0 0 -

 
 
 
 

  
 
 
 
 

k k

k k k k

k k k k
k

k k

k k k k

k k k k

               (34a) 

  * *

23 23 22 32 35 53

       k k k dL k k k      (34b) 
 

  * *

26 26 22 62 56 65

       k k k bL k k k          (34c) 
 

     
2*

33 33 23 222k k k dL k dL P dL             (34d) 
 

      * *

36 36 23 26 22 63    k k k bL k dL k dL bL k  (34e) 
 

     
2

66 66 26 552k k k bL k bL P bL             (34f) 
 

Where P  is the absolute value of the axial force in the 
member and the sign in front of it in equations (34d) and 
(34f) is positive for tension, negative for compression, 

and vanishes ( 0P  ) for linear solution. 

 
 
Modified fixed end moments with semi-rigid 
connections 
 
So far only structures loaded at joints have been 
considered, but in rigid jointed structures this is generally 
not the case. In order to deal with this problem, the whole 
solution process must be reviewed. In the analysis of 
skeletal structures by the stiffness method it was 
observed that the loading vector might contain fixed-end 
forces due to loads applied between joints. It is found that 
the   presence   of   an  axial  load,  shear  force,  and the 

 
 
 
 
influence of semi-rigid connections in a member affects 
the values of the fixed-end forces, and this is summarised 
in this section. 

Concerning fixed end forces for numerous types of 
span loadings, although the computations involved are 
rather tedious, the method of approach is straightforward 
and simple. What needs to be done in each case is to 
employ the method used for finding the stiffness matrix, 

namely apply equation (2) where bending moment M  
given by equation (3), is expressed with an additional 

term or terms due to the span loading and the force V  at 

the left end is found by using the moment equilibrium 
equation relative to the right end. Moreover, for the case 
of symmetrical trapezoidal distributed load, by making 
use of symmetry, the mid-span slope was taken to be 
zero. The corresponding transverse forces can be found 
by making use of the two equations of equilibrium for the 
member. The moments at the elastically restrained ends 
of a loaded member for some frequently encountered 
loads found for linear and nonlinear cases are presented 
as follows with the notation given in the relative figures 
and detailed derivations are given in Yilmaz (2008). 
 
 
Uniformly distributed load 
 
Figure 3 shows an elastically restrained member of 
length L and uniform flexural rigidity of section EI, loaded 
with a uniformly distributed load of intensity w per unit 
length over the whole span. The modified fixed end 
moments on the member ends due to a uniform 
downward load, w, are: 
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Concentrated load at any point 
 
Modified fixed end moments in the same uniform member
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Figure 3 Uniformly distributed load. 
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Figure 3. Uniformly distributed load. 

 
 
 

 
 

Figure 4 Single-point load. 
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Figure 4. Single-point load. 

 
 
 
of length L by an unsymmetrical point load of W as 
shown in Figure 4. 
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Linear variation of load  
 

In Figure 5, for example, the same uniform member is 
shown loaded by a total load W, which is distributed with 
an intensity varying linearly from w1 at the left-hand end
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Figure 5. Linear variation of load. 
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Figure 5. Linear variation of load. 
 
 
 

 
Figure 6. Symmetrical trapezoidal load. 
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Figure 6. Symmetrical trapezoidal load. 
 
 
 
to w2 at the right. 
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Symmetrical trapezoidal load (Figure 6) 
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Triangular load 

 
Determined the fixed-end moments in the uniform 
member shown in the Figure 7, when subjected to an 
unsymmetrical load, with a linear variation of intensity but 
of total wL/2. 
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Figure 7 Triangular load. 
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Figure 7. Triangular load. 
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The remaining other two nonzero modified fixed end 
forces, the shear forces and the axial forces, of relevance 
at the ends are found using static equilibrium equations. 
The modified fixed end moments at the right ends for 
above frequently encountered loads for linear and 
nonlinear cases are found either from symmetry or by an 

interchange of a  and b , 1  and 2  or w  values at the 

two ends, and the sign in front of it negative. 

 
 
ANALYSIS PROCEDURE 
 
The analytical expressions having been prepared for all 
the quantities of relevance for the problem, it remained 
only to write down a computer program for numerical 
applications. That was done and the resulting program 
contains special differences compared to a linear 
analysis. The main difference is that there is an iteration 
which can be stopped when a desired accuracy is 
reached. The geometric stiffness matrix, as it is called, 
due to axial force is a relevant feature of this analysis, 
which actually is the cause of the necessity for the 
iterative procedure. The computer program analysis 
starts with zero axial forces in all members, giving the 
linear solution at the first step. It assumes the axial forces 
in members to be zero initially. It setups the overall 
stiffness matrix, analyzes the frame under the external 
loads, obtains joint displacements and member end 
forces. Then, at each new load step the axial forces and 
frame deflections found in the previous step are used in 
the computations, of both the modified stiffness matrix 
(calculates the corresponding stability functions) and the 
modified fixed end forces. The nonlinear analysis 
terminated when the difference between the axial forces 
found in two successive iterations is less than 0.1% for 
each member. When the predetermined precision is 
attained, the iteration stops and the final displacements 
and rotations, member end forces, and variations of 
bending moment along relevant members are 
determined. The maximum value of the bending moment 
in each member is given, along with the maximum value 
and its position on the member. 

During these iterations the determinant of the overall 
structure stiffness matrix is calculated and loss of stability 
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is checked. If the convergence in the axial force is 
obtained without loss of stability, the joint displacements 
and member forces obtained in this nonlinear response 
are used in the computation of fitness values for this 
individual. It should be noted that in this algorithm the 
design load is not applied incrementally in the nonlinear 
analysis. Instead it is applied immediately and iterations 
are carried out at this load. It should also be pointed out 
that during the nonlinear analysis the fixed end moments 
change from one iteration to another due to axial forces 
in the members and rotational springs attached at the 
ends of members. The modified fixed end moments are 
calculated by taking into account the effect of shear 
deformations and the effect of flexible end connection for 
a frame member which is loaded as described in Yilmaz 
(2008). 

 
 
ANALYSIS EXAMPLE AND RESULTS 

 
The linear and nonlinear analysis procedures are 
illustrated in the following example structure comprised of 
lintel beams having fully rigid end sections connected to 
wide column members (shear walls) with rigid and semi-
rigid connections. The example is a shear wall with 
opening, a six-story single-bay building framework, the 
linear and nonlinear analysis of which have been 
extensively studied in the literature from a variety of 
different computational viewpoints for which analytical 
results found using the computer programme are 
compared with other analytical results (Girijavallabhan, 
1969; Popov et al., 1979; Dincer, 1989). 

Figure 8 shows the dimensions of the model shear wall, 
the connecting beams, and the assumed values of the 
arbitrary lateral loads. The lateral loads, assumed to be 
due to force of the wind acting on the side of the building, 
are transferred to the shear wall through cross beams 
placed horizontally between shear walls. The overall 
dimensions and loads are the same as those employed in 
an example problem by Girijavallabhan (1969). To 
simplify the analysis the modulus of elasticity of the shear 
walls and the connecting lintel beams are assumed to be 
the same, even though it was deemed feasible to assume 
different values of modulus of elasticity for every finite 
element in the assemblage (Girijavallabhan, 1969). 

The bottom boundaries of the shear walls were 
assumed to be rigid, the bottom nodal displacements 
were kept equal to zero; such a boundary condition is 
more realistic. 

The structure is a building frame that supports loads 
shown in Figure 8. All lintel beams and wide columns 
have rectangular shape sections that are oriented in the 
plane of the framework and are assumed to be fully 
restrained against out-of-plane behaviour with the 
following properties: lintel beams section depth h = 2ft, 
the thickness of the wall was assumed to be equal to 1.0 
ft., section area A = 2 ft

2
, moment of inertia I = 0.667 ft

4
, 

 
 
 
 

and shape factor 5/ 6f . Wide columns section area 

220 ftA   , moment of inertia 
4667.667 ftI   . 

Poisson’s ratio 0.15  . The framework has 18 

members, 14 nodes and 36 degrees-of-freedom (dof) for 
nodal displacement (i.e. lateral and vertical translation 
and rotation dof at each of the twelve free nodes 2 to 13). 
The members and nodes are designated by a square and 

a circle symbol (, ) with a number inscribed in it that 
indicates the member or node number respectively, 
shown in Figure 9. Briefly discussed in the following are 
the results of the study that demonstrate analytically the 
influence that shear, semi-rigid connections, and the 
geometrically nonlinear have on the behaviour of the 
member end forces. 
 The analytical results presented in Tables 1 to 7 
account for the combined influence that bending and 
shearing have on elastic behaviour, and were found 
using the computer programme to include the effect that 
shear deformations have on elastic behaviour. It is readily 
possible to conduct the same analysis using Euler-
Bernoulli beam theory, which ignores the effect of shear 
deformation on elastic behaviour, by setting the beam-

column member shear stiffness sGA    in equations 

(2) and (4). 
The analysis results found by this study are given in 

Tables 1 to 7 and compared with the results of other 
studies. 

This example frame originally appeared in 
Girijavallabhan (1969) and, since then, its nonlinear 
analysis has been studied by a number of researchers 
from a variety of computational viewpoints; 
Girijavallabhan (1969) conducted finite element analysis 
(with 918 nodes and 1568 elements). Popov et al. (1979) 
also conducted finite element analysis of the frame (with 
264 elements) using the program SUBWALL. Dincer 
(1989) analyzed the frame using a nonlinear analysis 
program (with 18 elements). 

The linear analysis results, member end forces, found 
by this study are given in Table 1, and member end 
moments are compared with the results of other studies 
in Table 2 for the six lintel beams only considering the 

effect of shear deformation ( 0.15  ). The member end 

forces for the beams obtained by different methods were 
practically the same except by Girijavallabhan (1969). 
The results for the method proposed herein are in exact 
values with Dincer (1989), in close agreement with those 
of Popov et al. (1979), and different from the results for 
the method proposed by Girijavallabhan (1969). The 
discrepancies between the methods are mainly due to a 
numerical mistake made by Girijavallabhan (1969), not 
due to using the simple bending theory as Popov et al. 
(1979) thought. 

The same example were solved by increasing the 
Young’s modulus, E, of the material with the same 
properties to induce the nonlinearity due to the effect of 
internal forces on bending.
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Figure 8. Model shear wall problem. 

 
 
Figure 8. Model shear wall problem. 

 
 
 

The nonlinear analysis terminated when the difference 
between the axial forces found in two successive 
iterations is less than 0.1% for each member. 

The linear and nonlinear analyses results, member end 
forces, by increasing the Young’s modulus, E, of the 
material, found by this study are given in Tables 3 and 4 

neglecting the effect of shear deformation ( 0  ), given 

in Table 5 considering the effect of shear deformation 

( 0.15  ), and the results of the linear and nonlinear 

analyses, member end moments, are compared in Table 
6 for the six lintel beams of the model shear wall problem 

with ( 0  )/without ( 0.15  ) the effect of shear 

deformation. 
The nodal displacement vector for the given boundary 

forces and displacements was determined by using 
equation (1), developed for the complete assemblage of
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Figure 9. Coding and numbering of the example problem. 

 
 
Figure 9. Coding and numbering of the example problem. 

 
 
 
the beam-column members. The same model problem 
was again solved, using geometrically nonlinear analysis 
with and without the effect of shear deformation. The 
nodal displacements obtained by both analyses were 
compared in Table 7 for rigid joins only, and it was 
observed that the overall displacement pattern were 

different. 
To give an idea about the effect of spring constants, on 

the displacements, the variations of the horizontal nodal 
displacements of left axis of the shear wall, the six nodes 
(joint nodes 2, 3, 4, 5, 6 and 7) of the frame are plotted in 
Figure 10 for the purpose of comparison. Values are



Gorgun et al.          2403 
 
 
 

Table 1. Member end forces with rigid connections for linear frame analysis. 
 

Member 

 Member end forces 

 Considering the effect of shear deformation ( 0.15  ) 

 m1 (kip-ft) m2 (kip-ft) V1 (kips) V2 (kips) P (kips) 

1  5763.7287 -1521.5206 141.4069 -141.4069 42.4207 

2  1645.4011 -804.4833 84.0918 -84.0918 36.2329 

3  943.0422 -271.1846 67.1858 -67.1858 29.3061 

4  416.8724 75.7545 49.2627 -49.2627 22.0200 

5  71.9143 223.1918 29.5106 -29.5106 14.6329 

6  -76.3393 145.5773 6.9238 -6.9238 7.2849 

7  5339.4423 -1781.6503 118.5931 -118.5931 -42.4207 

8  1905.2845 -946.2023 95.9082 -95.9082 -36.2329 

9  1084.7157 -356.5734 72.8142 -72.8142 -29.3061 

10  502.3293 5.0438 50.7373 -50.7373 -22.0200 

11  142.7712 162.1227 30.4894 -30.4894 -14.6329 

12  -15.0580 145.8201 13.0762 -13.0762 -7.2849 

13  -62.0018 -61.7555 -6.1879 6.1879 -22.6848 

14  -69.2908 -69.2454 -6.9268 6.9268 -23.0940 

15  -72.8269 -72.8950 -7.2861 7.2861 -22.0769 

16  -73.7978 -73.9441 -7.3871 7.3871 -20.2479 

17  -73.3732 -73.5854 -7.3479 7.3479 -17.4132 

18  -72.7279 -72.9707 -7.2849 7.2849 -13.0762 
 
 
 

Table 2. Comparison of member end moments with rigid connections for linear frame analysis  
 

Lintel beam 

Considering the effect of shear deformation ( 0.15  ) 

Girijavallabhan (1969)  Popov et al. (1979)  Dincer (1989) and present study 

m1 (kip-ft) m2 (kip-ft)  m1 (kip-ft) m2 (kip-ft)  m1(kip-ft) m2 (kip-ft) 

13 38.78 38.48  62.70 62.50  62.00 61.76 

14 41.10 40.89  69.32 69.25  69.29 69.25 

15 41.33 41.06  72.26 72.35  72.83 72.90 

16 40.29 39.79  72.90 73.05  73.80 73.94 

17 38.75 38.27  72.17 72.37  73.37 73.59 

18 31.37 31.60  61.59 62.91  72.73 72.97 
 
 

 

given at the joints each floor level for all the nonlinear 

analyses with/without shear effects for 0 1 2k k  (pin), 

0.5, 1.0 and 10
9
 (rigid). The difference between the linear 

and nonlinear deflections for both the semi-rigid and rigid 
connections with and without shear effect is less than 
0.096 ft over the full height of the wall. Here it is assumed 
that the relative rotation of the beam and the wall face at 
the joint would not be zero. 

A drift factor of sway deflection = height/500 of the 
frame is defined by the continuous line in Figure 10. It 
can be seen that only where the semi-rigid joints are 
considered are the deflections less than the pin case. 

Horizontal sway deflections of the six nodes (joint 

nodes 2, 3, 4, 5, 6 and 7)  of the frame with rigid 
connections only are plotted in Figure 11 for all the linear 

and nonlinear analyses with ( 0.15  ) and without 

( 0  ) shear effects. The difference between the linear 

and nonlinear horizontal deflections for rigid connections 
without shear effect is 0.0176 ft while the difference 
between the linear and nonlinear deflections with shear 
effects for rigid connections is 0.0179 over the full height 
of the structure. It can be seem that the effect of the 
shear deformations is greater than the effect of the 
geometric nonlinearity on the deflections for this frame 
example. 

The member end forces were computed from nodal
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Table 3. Member end forces with rigid connections for linear frame analysis. 
 

Member  

Member end forces 

Neglecting the effect of shear deformation ( 0  ) 

m1 (kip-ft) m2 (kip-ft) V1 (kips) V2 (kips) P (kips) 

1  5824.0638 -1469.3156 145.1583 -145.1583 43.2861 

2  1596.0024 -757.8473 83.8155 -83.8155 36.9611 

3  899.3977 -240.1245 65.9273 -65.9273 29.8862 

4  388.8255 94.1843 48.3010 -48.3010 22.4497 

5  56.4270 233.1020 28.9529 -28.9529 14.9150 

6  -83.4091 148.3445 6.4935 -6.4935 7.4242 

7  5244.4935 -1799.2417 114.8417 -114.8417 -43.2861 

8  1925.5538 -963.7089 96.1845 -96.1845 -36.9611 

9  1105.1525 -364.4256 74.0727 -74.0727 -29.8862 

10  513.1848 3.8053 51.6990 -51.6990 -22.4497 

11  146.9717 163.4993 31.0471 -31.0471 -14.9150 

12  -13.5606 148.6252 13.5065 -13.5065 -7.4242 

13  -63.4370 -63.0624 -6.3250 6.3250 -18.6572 

14  -70.8019 -70.6951 -7.0748 7.0748 -22.1118 

15  -74.3359 -74.3942 -7.4365 7.4365 -22.3737 

16  -75.2642 -75.4299 -7.5347 7.5347 -20.6519 

17  -74.7850 -75.0308 -7.4908 7.4908 -17.5406 

18  -74.1021 -74.3827 -7.4242 7.4242 -13.5065 

 
 
 

Table 4. Member end forces with rigid connections for nonlinear frame analysis 

 

Member  

Member end forces 

Neglecting the effect of shear deformation ( 0  ) 

m1 (kip-ft) m2 (kip-ft) V1 (kips) V2 (kips) P (kips) 

1  5868.3279 -1511.6259 145.6322 -145.6322 41.1532 

2  1631.5414 -794.6267 84.3107 -84.3107 35.1575 

3  927.1938 -268.5304 66.4068 -66.4068 28.5218 

4  407.9488 75.0078 48.7157 -48.7157 21.5396 

5  67.3667 222.4179 29.2600 -29.2600 14.4077 

6  -79.0751 144.2800 6.6605 -6.6605 7.2268 

7  5286.8834 -1844.3539 114.3678 -114.3678 -41.1532 

8  1964.0363 -1001.0711 95.6893 -95.6893 -35.1575 

9  1133.5805 -392.2499 73.5932 -73.5932 -28.5218 

10  531.7022 -14.6209 51.2843 -51.2843 -21.5396 

11  157.0943 153.1664 30.7400 -30.7400 -14.4077 

12  -9.6624 144.4868 13.3395 -13.3395 -7.2268 

13  -59.9585 -59.7252 -5.9957 5.9957 -18.6785 

14  -66.2099 -66.1523 -6.6357 6.6357 -22.0960 

15  -69.5955 -69.6294 -6.9822 6.9822 -22.3089 

16  -71.0543 -71.1531 -7.1319 7.1319 -20.5443 

17  -71.5329 -71.6941 -7.1809 7.1809 -17.4005 

18  -72.0104 -72.2172 -7.2268 7.2268 -13.3395 

 
 
 
displacements in all cases, and the results for the method 
proposed herein are in close agreement with those for all 

other methods except by Girijavallabhan (1969). The 
slight discrepancies between the methods are likely
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Table 5. Member end forces with rigid connections for nonlinear frame analysis. 
 

Member  

Member end forces 

Considering the effect of shear deformation ( 0.15  ) 

m1 (kip-ft) m2 (kip-ft) V1 (kips) V2 (kips) P (kips) 

1  5808.8672 -1565.6060 141.9181 -141.9181 40.2200 

2  1681.0020 -841.0891 84.6388 -84.6388 34.4467 

3  970.2714 -298.8287 67.7028 -67.7028 27.9792 

4  435.4625 57.1800 49.6935 -49.6935 21.1364 

5  82.5058 212.8324 29.8181 -29.8181 14.1397 

6  -72.2553 141.7219 7.0860 -7.0860 7.0979 

7  5383.6610 -1827.8358 118.0819 -118.0819 -40.2200 

8  1943.0991 -983.0238 95.3612 -95.3612 -34.4467 

9  1112.1834 -383.5961 72.2972 -72.2972 -27.9792 

10  520.2695 -12.8725 50.3065 -50.3065 -21.1364 

11  152.6467 152.0554 30.1819 -30.1819 -14.1397 

12  -11.3385 141.9029 12.9140 -12.9140 -7.0979 

13  -57.6627 -57.5300 -5.7733 5.7733 -22.7207 

14  -64.5068 -64.4841 -6.4675 6.4675 -23.0641 

15  -68.2052 -68.2448 -6.8427 6.8427 -21.9907 

16  -69.7168 -69.8051 -6.9968 6.9968 -20.1246 

17  -70.1582 -70.2979 -7.0418 7.0418 -17.2679 

18  -70.7419 -70.9228 -7.0979 7.0979 -12.9140 

 
 
 

Table 6. Comparison of member end moments with rigid connections for linear and nonlinear frame analyses 

 

Lintel beam  

Member end moments (kip-ft) 

Linear 0    Linear 0.15    Nonlinear 0    Nonlinear 0.15   

1m  2m   1m  2m   1m  2m   1m  2m  

13  63.44 63.06  62.00 61.76  59.96 59.73  57.66 57.53 

14  70.80 70.70  69.29 69.25  66.21 66.15  64.51 64.48 

15  74.34 74.39  72.83 72.90  69.60 69.63  68.21 68.24 

16  75.26 75.43  73.80 73.94  71.05 71.15  69.72 69.81 

17  74.79 75.03  73.37 73.59  71.53 71.69  70.16 70.30 

18  74.10 74.38  72.73 72.97  72.01 72.22  70.74 70.92 

 
 
 
mainly due to different ways in which the member fixed 
end forces are considered. It is worth noting that the 
structural model for the proposed method involved 
significantly fewer beam and column elements (only 18 
elements) than the other methods. 
 
 
Conclusion 
 
Analysis by conventional simple bending theories might 
lead to an overestimation or underestimation of the end 
forces in shear walls and lintel beams. In this study the 
second order analysis of planar frames made up of 
flexibly connected prismatic members having rigid end 

sections taking into consideration the effect of shear 
deformations is considered and a computer program is 
prepared for numerical computations. Different types of 
span loadings are considered and most of the span 
loadings not being found in the literature, the results are 
checked among themselves as special cases of others. 
Moreover, special problems being mirror images of 
others are used for checking purposes, as well. A design 
example is included to demonstrate effect of connection 
flexibility, rigid end sections, shear deformations and the 
geometrical nonlinearity in the design of general frames. 

It is noticed from the design example that semi-rigid 
connection flexibility affects the distribution of forces in 
the frame and causes increase in the drift of the frame.
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Table 7. Comparison of joint displacements with rigid connections for nonlinear frame analysis 
 

Displacement no.  

Joint displacements lateral and vertical translations (ft), rotations 
(radians) 

Neglecting the effect of shear 

deformation ( 0  ) 

Considering the effect of shear 

deformation ( 0.15  ) 

Nonlinear analysis Nonlinear Linear Nonlinear 

1  0.2980848455972192 0.3551806822627144 

2  6.172982981319033D-03 6.033000919717811D-03 

3  -1.660481286579463D-02 -1.659248179035046D-02 

4  0.4742771973768766 0.5432039793290816 

5  7.930858378012861D-03 7.755334416486581D-03 

6  -1.842442986664716D-02 -1.848404070014761D-02 

7  0.6638287644835048 0.7429086977084692 

8  9.356950110235815D-03 9.154293412705168D-03 

9  -1.932121854344592D-02 -0.0194358610389928 

10  0.8588931652910163 0.9461001264057282 

11  1.043393167278179D-02 1.021111535164722D-02 

12  -1.957092304760685D-02 -1.971957148346693D-02 

13  1.054383185616977 1.147251957969186 

14  1.115431766190441D-02 1.091809875859807D-02 

15  -1.945463523729933D-02 -1.962182699973432D-02 

16  1.248173466413118 1.343713289352048 

17  1.151566006402824D-02 1.127299343405697D-02 

18  -0.019287119775222 -1.946134495756661D-02 

19  0.2794063214754065 0.3324600230060343 

20  -6.172982981319009D-03 -6.033000919717824D-03 

21  -1.604520388960615D-02 -1.622578665999867D-02 

22  0.4521811577959595 0.520139922248268 

23  -7.930858378012828D-03 -0.0077553344164866 

24  -1.826902327624582D-02 -1.842036783532534D-02 

25  0.641519884590283 0.7209179795774135 

26  -9.356950110235776D-03 -9.154293412705192D-03 

27  -0.019413390360414 -1.954219686659011D-02 

28  0.8383488381865102 0.9259755420668144 

29  -1.043393167278175D-02 -1.021111535164725D-02 

30  -0.0198231306809694 -1.994205135957471D-02 

31  1.036982698164563 1.129984037771627 

32  -1.115431766190437D-02 -1.091809875859811D-02 

33  -1.982607652613628D-02 -1.994249479714114D-02 

34  1.234833936257369 1.330799325476182 

35  -1.151566006402821D-02 -1.127299343405701D-02 

36  -1.971046515581687D-02 -0.0198275643243373 

 
 
 

This in turn necessitates the consideration of P  
effect in the frame analysis. It required three to five 
iterations in the design examples considered to obtain the 
nonlinear response of frame which clearly indicates the 
significance of geometric nonlinearity in the analysis and 
design of semi-rigid frames. It is also noticed that 

consideration of P  effect and shear deformation 
yields a heavier frame in the case of semi-rigid as well as 

rigid frame. The analysis example demonstrate that the 
proposed nonlinear analysis method based on bending, 
shearing and axial stiffness approximately simulates the 
elastic behaviour of structures. Comparisons with results 
found by other methods for the frame example 
determined that the proposed method can effectively 
predict the member end forces of general frameworks, 
achieve more accurate results than the conventional
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Figure 10. Lateral deflections at each floor level in the example problem with varying 

spring constants k. 
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Figure 10. Lateral deflections at each floor level in the example problem with varying spring 

constants k. 
 

 
 

 

 

 

 

 

 

 

 

Figure 11. Lateral deflections at each floor level in the example problem with rigid 

connections. 
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Figure 11. Lateral deflections at each floor level in the example problem with rigid connections. 

 
 
 

method. 
It has also been observed that displacements and 

critical extreme values of bending moment for the same 
structure become larger when the spring constants of 
flexible connections become less. The variation is 

between the values pertaining to simple, 0 1 2k k  

(pin), and rigid,  1 2k k  (rigid), end connections. 

Compared to other approaches, the primary 
advantages of the proposed method are its simplicity, 
practicality and efficiency. The proposed stiffness 
coefficients simplify the means to account for geometric 
nonlinearity, effect of shear deformation, rigid end 
sections, and semi-rigid connections. Finally, studies 

have shown that the proposed method can be readily and 
effectively implemented for the advanced analysis and 
design of steel frames, especially, nowadays, widely 
used precast reinforced concrete structures, and 
structure comprised of lintel beams having fully rigid end 
sections   connected   to wide column members (shear 
walls) with rigid and semi-rigid connections. 
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