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Let T(X) denote the full transformation semigroup on a set X. For an arbitrary equivalence relation £
on X, we consider a sub semi-group of T(X) defined by:
Tee(X) = {a €T(X): (x,xa) €E foreach x€X} \nich is called the self-E-preserving
transformation semi-group on X. In this paper, we discussed a natural partial order on TSE(X) and
characterize when two elements of Tzz(X) are related under this order. We also described the left

compatibility and right compatibility of each element of Ts (X)) with respect to this order.
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INTRODUCTION

For any semi-group &, Mitsch (1986) defined the natural
partial order on S as follows: for a,b €S,
a=<h=a=xb=>by,a=ayforsomex,vES5.
This order coincides with the natural partial order for a
regular semi-group which is the following: for a, b € 5,
a=b=a=eb=>5bf forsome &, f € E(5), where
E(5]is the set of all idempotents of S.

Let X be a nonempty set and T(X) be the semigroup
under composition of all the full transformations on X.
Kowol and Mitsch (1986) endowed T (X) with the natural
partial order and determined when two elements of T(X)
are related under this order in terms of images and
kernels. For an equivalence relation E on X, let
T(X) ={a eT(X):¥(x,v) EE,(xa,va) € E},
then Tz (X) becomes a sub semi-group of T(X). Sun et
al. (2008) described the natural partial order on Tz (X)
and found out elements of Tz (X) which are compatible
with respect to this order. In addition, we consider a
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sub semi-group of T(X) defined as follows:
TSEEXJ = {ﬂ: = TEX) Y E X, (JL', J.'C'E) = E}’ which is called
the self-E -preserving transformation semi-group on X

In this paper, we study the natural partial order on
Tz(X) and characterize when two elements are related
under this order. Furthermore, we determine the left
compatible and right compatible elements of Tz (X} with
respect to this order.

Fora € T(X), let ml{a) = fva~l:v € Xa). Hence,
mla)is a partition of X .

Moreover, we define a mapping @.: (&) = Xa as in
Ma et al. (2010) corresponding to & by Pe, = xe  for
all P €mwl(a) and x € P.

Then &, is a bijection from :‘T[ﬂi] onto X¢t. For each
A € X/E, we define

n,(a) ={P en(a): PNA =0}

Let <4 and F be collections of subsets of X. We say that
E is a refinement of <4 or B refines <4 if UEB = U A
and for every B £ B, there exists A €4 such that
EC A4
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Throughout of this paper, let X be a nonempty set and

E an arbitrary equivalence relation on X. Next, we
introduce useful propositions.

Proposition 1.1. Let & £ T_cg(-f)- If P €ml(ea), then
there exists A4 € X/E such that P S A. Hence ()
refines X /E.

Proof. Let P £m(a) and x € P. Then there exists
AEX/E such that *£A4. Let p EP. Since
a €T (X), we have (p,pa), (x,xa)€ E. Since
pa = xa, by transitive of E we deduce that (p, x) € E.
Therefore € A, hence P £ A. [ ]

Proposition 1.2. Let @ € Tez(X) and 4 € X/E. Then
the following statements hold:

1.4=Um,(ea).
2. Aa € 4,

Proof.

1. For each P £m (a), we have P € m(a) and
Fn A = 0. By Proposition 1.1, there exists 5 € X/E
such that P = B, Since A,E €EX/E and D+ ANBE,
we have 4 = B. This proves that Um (o) S A. Next,
let x £ A. Since m(a) is a partition of X, there exists
some P € (@) such that x € P, so P A = @, hence
Pem,la) Thus x € Um,(a). hence 4 € Um () .
2. Let A EX/E and x € A. Since (x,xa) € E and
x £ 4, we have xct € A, Hence A & A, [ |

MAIN RESULTS
First we show that every element of Tzz (X is regular.

Proposition 2.1. For @ € Tsz(X), @ is a regular
element. Hence Tz (X) is a regular semi-group.

Proof. Let @ £ Tz (X). For each x € X&, we choose

and fix an element x' € X such that x & = x. Define
G:X = Xpy

= {1 if x € Xer:

x  otherwise.
Let x €EX. If x € X, then (x, xf) = (x,x) EE. If
xEXa, then (x,xf)=(xx')=(x'ax')EE
since @ € Toz (X). Thus ff € Tsz(X). Forx € X,
xaffe= (xa)fa = (xa) o= xa

This proves that  is a regular element of Tz (X). ®

Since Tgz (X)isa regular semigroup, as was mentioned

we deduce the natural partial order on Tz (X as follows:
for ct, f € Tse (X)),
a =f = a=d0f=[Fyforsome s,y e E(Te (X))

The following theorem investigates the condition when
a = fforalla,f € T (X).

Theorem 2.2. Let @, € Tez(X). Then & = B if and

only if w(F) refines w(e) and for every
Pem(a),Pa, € Pf.
Proof. Suppose that @ = [5. Then there exist

J,v E E[:T}E(X:J} such that « =4df = Bv. Let
P ew(f). Then PE. =x for some x £ Xf3. Since
P < (xy)a~! € n(a). This proves that 7(f) is a
refinement of {et).

Let P €Em(a) and x € P. Then xa = Pa,. Since
§ € E(Tsz(X)), x67 = x. Therefore "¢ = x0p = (x8)6p = xda
which implies that x& € P. Hence Pce, = xdf5 € Pf§.

Conversely, suppose that () refines m(e) and for
every P Ew{a),Pa, € PE. For each x € Xf3, there
exists a unique @, € 7(f) such that x = @._5.. By
assumption, there exists a unique E. £ m{a) such that
@. = E_. It follows by Proposition 1.1 that P, = A for
some A4 € X/E, hence @, = A. By Proposition 1.2(2),
we have @.5, € Af £ 4 and P, € Aa £ A, hence
[:‘«.‘1 P_I.C'r:_:I = (QA.,S_J P_I.JIQ_:I £ E. Define y: X = X by

= {P_x.cr_ if x € Xf5;

' x otherwise.

Itis clear that ¥ € Tsz(X). To show that ¥ € E(Tsz (X)),
let x € X, If x € X8, then x¥° = xv. If x € XB, then
x=@.5, xy=Fa, and Q.= P, for some
Q. ew(f), P.enla). By assumption, B.a, € P.j3,
there exists Vv € P. such that P.x, =vf. Since
vB EXB, there exists @,z Em(f) such that
vB = @Q,p5.. Hence, @,z N E, # @ which implies that
Q,s € P.. By definition of ¥, we have ¥5y = F,a..
Thus, x¥- =(P.a )y=vfy=PFP.a =xy. This
shows that v € E(T.-(X)) as required.

To show that By = a, let x € X. Then xff = @, f.
and x € Q.0 S P.5 for .5 Em(f) and
P.pEm(ex) Then xgy = P g, = xeax, S0 By = .

Next, for each P £ m(a), by assumption Pa, £ Pj,

we choose and fix ' € P such that Pa, = p' 5. Define
G X =X by

some



x8 = p'forall P € w(a) and x € P.

Let x € X. Then x & P, for some P, €w(a). By
Proposition 1.1, there exists 4 € X /E such that P, = A.
Since x6=p.EP, A4 (x,x3)EE  Thus
§ ET(X). Consider x6f = p.ff = P.a, = xa.
Since p. € E., by definiton of § we have 7.4 = p..
and x6% = p/d = p. = x4,
Therefore = §Fand d €EE [:TgE (X ]}, respectively.

Thus the theorem is completely proved. u

Corollary 2.3. Let @, 8 € Tsz(X). Then @ = £ if and
only if for every A € X/E, m () is a refinement of
m,(a) and for every P € m,(a), P, € PS.

Proof. Suppose that o = /5. Let AEX/E and
Pem,(f). we then have P Em(ff) and PN A = 0.
By Theorem 2.2, IT(B:I is a refinement of H(ﬂ), there
exists @ Em(a) such that P S Q. Thus
@ = PnA<SQn Awhich implies that @ € m,(a) and
P = Q. Hence m4(f) refines 74 (e). Moreover, for any
P € m (@), we then have P € m(a). By Theorem 2.2,
Pa_ € Pf.

Conversely, suppose that for every 4 £ X /E, ()
is a refinement of m4(@) and for every P € m (),
Pa, € PR. To show that @ < 5, let P € m(£). From
Proposition 1.1, (5] refines X/E. Then there exists
AEX/E such that PS4, so Pem(f). By
assumption, there exists @ € m,(a) such that P = Q.
Since w4 la) Ewla), w(B) refines m(e). Next, let
P € 7(a). By Proposition 1.1, we have P = A for some
A € X/E nhence P € m (a). By assumption, Pa, € PS.
It follows by Theorem 2.2, « < 2 as desired. &

Recall that for any partial order 2 on a semi-group 5.
an element ¢ € 5 is said to be left compatible with 2 if for
every (a,b) € p implies that (ca,chb) € p. Right
compatible with 2 is defined dually. Next, we describe the
left and right compatible elements in Tz (X).

Theorem 2.4. Let & € Tz (X). Then @ is left compatible
with = on Tzz(X) if and only if  is surjective.

Proof. Suppose that @ is not surjective. Let
a' € X\ Xa. Then there exists A € X/E such that
a’ € A. We choose and fix an element & € Aa, hence
a # a'. By Proposition 1.2(2), we have that &, a’ € A,
Define 5: X = X by
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= {ﬂ" if x = a;

X otherwise,

Since a,a €4, fET(X). We note that
n(Bf) = {{ﬂ: ﬂ}} U {{1} s x € X\{a, H}} It is easy to
see that w(I;) refines w(f) and Pf, € PI. for all
P ea(f) where I is the identity map on X. By
Theorem 2.2, we deduce that £ < I.. Since a’ € Xaf,
we have @ = a'(xf)™! € w(af). Then

g=a(af) t=af a1 fa,a'la™t = aa™?t,

Since Qal, = (aa™Yal, = {al,} = {a},
Q(aff), = a' & Qal,.. By Theorem 2.2, we conclude
that ccf5 = l,. This proves that ¢ is not left compatible
with = on Tz (X,

Conversely, assume that & is surjective. Then
Ya ™ la=VYiforall ¥ S X. Let f.¥ € Tsz(X) be such
that 5 = v¥. To show that @5 = ay via Theorem 2.2, let
P e m(ay). Then Play), =y for some V¥ € Xay.
Since Xay S Xy, v € Xy. Let @ € w(¥) be such that
Qv.=7v. Since =y, QS F for some F &x().
Since

Pap = y(ay)laf = (yy a 'af =
(7B =QB S BB = {PB.},

we have that P € PS5, (aff)™* € w(af).

Next, let P € m(af). Thus F = v(af)™? for some
v E XafS. We then have v € X5, so @f. = v for some
Q@ €w(f). Since £ =¥, by Theorem 2.2 we have
@f. € @y. Consider

P(af). =yf'a  af, = Qa™'aB, = @B, €

Qv =Qa tay =vf lalay = Pay

It follows by Theorem 2.2 that aff = ay. Therefore & is
left compatible with = on Tz (X). [

Theorem 25. Let @ € Tez(X). Then a is right

compatible with = on Tsz(X) if and only if for every
AceX/E Aca(a)or|Pl=1foral P € (a).

Proof. Assume that there exists 4 £ X/E such that
Ag€mn(a) and |P'| =1 for some P'E m (e). By
Proposition 1.2(1), we have P’ £ A. Since 4 € w(a), it
follows that P’ = A. We choose and fix elements »' € P’
and a EA\P' . Thenp'a=P'a, and aa = P'a,. Now,
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define f: X — X by

nfa if x = p';

xB = {x otherwise.

Let x£EX. If x=p', then (x,xf)= (x,x)EE If

x=p', then (x,xf)= (p'.a) EE since p',a EA

Thus f € Tez (X)),
It easy to see that w(l.)= {{1} L EX} is a

refinement of (5} where I is the identity map on X.

Moreover, P8, € Pl for all P € (). By Theorem 2.2,

B =1 Since (P!“-:‘U};'—"]_i
=(P'a)a ;' =P I; =P, we deduce
P' € m(I.a). By the definition of £ and P"\{p'} = @,
we have that
P'Ba= ({a}uP'\{p'} a = {aa, P'a_}. Claim

that P’ €@ for all @ €w(fa). Suppose not, there

exists @ Em(fa) such that P S Q. Since
faa,P'a }=P'fa,it follows that
fac, Pla } S Qfa={0(Ba).}  which is a

contradiction. So we have the claim. This proves that
m(l.ea) does not refine m(Sa). By Theorem 2.2, we
conclude that [Se % [.c. Therefore ¢ is not right
compatible.

Conversely, suppose that for all A € X/E, A € w(a)
or [Pl =1 for all PEm (a). Let £, ¥ E Tz (X) be
such that 5 < ¥. To show that Sa = ye via Corollary
2.3, let A € X /E. We consider two cases as follow.

Case 1. 4 € w(a). Then Az, = v for some ¥ € Xa. By
Proposition 1.2(2), A EA Since
Afa € Ax={yLA S y(Ba) ten(fa). By
Proposition 1.1, there exists B € X/E such that
v(fea) ™ S B. Then A = B since X/E is a partition of
X. Hence A = v(fa)™' which implies that
m,(Ber) = {A}. Similarly, we have that 7, (ya) = {A].
Hence . (va) refines w (fa). Moreover, let
P emy(Ba) ={A} Then P(Ba), = A(fa), = v € {v} = Aya = Pya.

Case 2. |P| =1 for all P €m (a). Let P € m (ya).
P(ya). = v for some v € Xya. Then Py S va™t,
Since va~! € m (@), by assumption |va '] = 1. Let
va ™! =[x} for some x € X. We then have Py = {x}
and PNA=0, hence P=xy '€ m(¥). Since

= ¥, by Corollary 2.3, m;(¥) refines m;(£). Hence
PSS @ for some @ =m,(f). This means that

PR < QB =1{Q8.}

Now, we consider Pfa S Qfa={Qf a}, thus
P S (Qf,a)(fa)™, Since
d=4AnPC

ANn(QR.a)(Ba) ™ (QB.a)(Ba) Tt emy(Ba). This
proves that T (¥a) refines 4 Se).

Next, let P € (fa). Then P(fa), = v for some
v € X which implies that P < yee By assumption,
va ' ={x} for some xE€ X, hence Pf = {x}.
Therefore P =xf~1 € m (). It follows from § =¥
and Corollary 2.3, we have Pf, € Py. Hence
P(fa), € Pfa < (Py)a.

From each case, we conclude that fa = ya by

Corollary 2.3. This shows that @ is right compatible with
ZonTzz(X). m
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