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The spectral scheme for spacetime geometry is a totally new framework for quantitatively describing 
the spacetime geometry in terms of the spectra of a certain elliptic operator (typically the Laplacian 
operator) on the space in question. The central idea of the framework can be symbolically stated as 
``Let us hear the shape of the Universe!" There are several advantages of this framework compared to 
the traditional geometrical description in terms of the Riemannian metric. After sketching the basics of 
the spectral scheme, we give a new formula for the Einstein-Hilbert action, which is a central quantity 
for the general relativity theory, in terms of the spectral scheme. We then pay attention to its application 
to the quantum universes and see how the quantum fluctuations of spacetimes can be effectively 
described in terms of the spectral scheme. 
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INTRODUCTION 
 
The year 2016 is a special year for celebrating the 
centenary of the general theory of relativity, which has 
been presented by Albert Einstein in 1916 (Einstein, 
1916). It might be, thus, an appropriate occasion to 
discuss some of modern attempts for pursuing the 
original dreams of Einstein.  

We here focus on the spectral scheme for spacetime 
physics as one of such promising modern attempts along 
the line of Einstein. The  spectral  scheme  for  spacetime 
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geometry is a totally new framework, constructed by the 
author (Seriu, 1996, 2000a, b), which quantitatively 
describes the spatial geometry of the universe in terms of 
the spectra of elliptic operators (typically the Laplacian 
operator) on the space in question. Here the spectra of 
an elliptic operator defined on a space roughly 
correspond to the ``sound properties of a drum" if we 
dare to search for some analogous concepts in daily life. 
Indeed there is a famous mathematical problem posed by 
a mathematician M. Kac, which states ``Can one hear the 
shape of a drum?" (Kac, 1966). The mathematical 
question suggested by this phrase is whether and to what
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extent the geometrical information of a space (``the 
shape of a drum") can be inferred purely from the spectra 
of the space (``the sound of the drum"). Borrowing the 
phrase, the central idea of the spectral scheme can be 
symbolically stated as ``Let us hear the shape of the 
Universe!" 
 
 

THE BASICS OF THE SPECTRAL SCHEME 
 

The spectral scheme is a rigorous theoretical scheme for 
analyzing the geometrical structures of the spacetime in 
terms of the spectra, that is, the ‘‘sound’’ of the universe, 
so to say, as mentioned previously.   

There are several advantages of this framework 
compared to the standard description based on the 
Riemannian metric tensor.  

One among them is that the spectra carry important 
geometrical information, both the local one and the global 
one in a unified manner, so that they are quite suitable for 
describing the scale-dependent topology of the spacetime 
(Visser, 1990; Seriu, 1993). Here the scale-dependent 
topology is a topological structure of the spacetime which 
becomes more and more topologically complicated as the 
observational scale becomes more and more 
microscopic.  

It is generally believed that the quantum universes 
should possess this type of scale-dependent topological 
structures due to quantum fluctuations in the spacetime, 
which is usually called the ‘‘spacetime foam" picture 
(Wheeler, 1957). On the other hand, the standard 
framework heavily relies on the Riemannian metric tensor, 
which is basically a local quantity and is not convenient to 
describe the global topology of the space. 
For another advantage of the spectral scheme (though 
deeply related to the above one), we recall a standard 
speculation that the microscopic spacetime structures get 
``fuzzy" due to quantum fluctuations near the Planck 
scale (1957). It is very difficult to describe such fluctuated 
geometries (including topological fluctuations) in terms of 
the standard metric description. We argued subsequently 
in the study that such quantum fluctuations in spacetime 
structures are naturally depicted in the spectral scheme. 
We also note that the spectra are diffeomorphism 
invariant quantities so that they carry purely geometrical 
information (that is, independent of the choice of the 
coordinate system) of the space. This property totally 
matches the spirit of relativity. On the contrary, the 
Riemannian metric is a tensor and it transforms according 
to the choice of the coordinate system, meaning that the 
metric carries not only purely geometrical information but 
also unphysical information on the choice of the 
coordinate system.  Needless to say, the latter causes 
several complications for investigating geometry of the 
space, including quantum spacetimes. As is shown later, 
this point becomes important when we discuss the 
expression for the wave function of the Universe.  

Now  let    be  the  geometry  of  the  (D-1)-   

 
 
 
 

dimensional
1
 Riemannian manifold Σ with the metric . 

For concreteness, we assume that Σ is a compact 

manifold without boundaries and that  is positive 

definite. We may consider  as a mathematical model for 
the ``space", that is the spatial section of the universe. 
Let Δ be the Laplacian operator on , defined by 

 for a scalar 
smooth function f. Here  is the covariant derivative 

compatible with ; is the inverse matrix of ; 

. (We can also consider other elliptic 
operators. Here we confine ourselves to the Laplacian 
operator for concreteness). We then set the eigenvalue 

problem, , getting the solutions, 

, where  is the n-th 

eigenvalue (or spectrum) and is the n-th eigen 
function. (We number the spectra in an increasing order, 

. ) 
Here the spectra, or the set of all (countably infinite) 

eigenvalues, , carry information on the 
geometry  .  

Let us thus use the spectra  of the 
Laplacian (or any other elliptic operator) as the new 
variables representing the geometry   . This is the core 
idea of the spectral scheme. Let us call this 
representation of the geometry   in terms of the spectra 
the spectral representation of geometry.  

As mentioned previously, it might be helpful to imagine 
the geometry   as though a musical drum. Then the 

eigenvalue problem corresponds to the 
analysis of the vibration modes of the drum, where the n-

th spectrum and the n-th eigenfunction  are 
analogous to, respectively, the n-th overtone (harmonics) 
and its vibration mode of the drum. Now the phrase ``Can 
one hear the shape of a drum?" due to Kac (1966) is a 
question as to what extent one can infer the shape of a 
drum by just hearing its sound without looking at it. In 
mathematical terms, the question is rephrased as to what 
extent the geometrical information  is captured by the 

spectra  of the Laplacian. 
At this stage, it is appropriate to mention that there 

exist the so-called isospectral manifolds, that is, mutually 
diffeomorphism inequivalent manifolds with exactly the 
same spectra of the Laplacian (Kac, 1966; Chavel, 1984).  

From the viewpoint of spacetime physics, however, 
there is no surprise in such manifolds and they do not 
cause any problem to the spectral scheme, as can be 
seen subsequently. 

The physical interpretation of the isospectral manifolds 
is   as    follows.   Symbolically    speaking,   each   elliptic 

                                                 
1
Throughout this paper, the spacetime dimension is assumed to be $D$ so that 

the space dimension is set 



 
 
 
 
operator corresponds to, in a sense, one particular way of 
``hitting the drum" so that it detects some portion of 
geometrical information of the space (``the drum"). There 
is no surprise, then, for the existence of the isospectral 
manifolds because one elliptic operator such as the 
Laplacian extracts only some portion of the whole 
geometrical information. If we take into account all the 
elliptic operators allowed on the space, then, all the 
physically sensible geometrical information on the space 
should be extracted. If two spaces would have exactly the 
same spectral profile for all the elliptic operators, then, 
one would safely say that they are physically 
indistinguishable and effectively the same space (Seriu, 
2000a). With this interpretation in mind, we can safely 
confine ourselves to the Laplacian operator as a typical 
elliptic operator throughout this paper.  

Some more comments are in order here. As mentioned 

previously, we understand the spectra, , 
are numbered in an increasing order, 

. Now the 

smallest eigenvalue  is always zero with its 

eigenfunction being f . (The mode 

 is usually called the ``zero 
mode"). When the space in question is a compact one, 

which is always assumed here,  then corresponds to 
the smallest non-zero spectrum. Some spectra can be of 
the same value even though their eigenfunctions are 
mutually independent (This phenomenon is customarily 
called ``degeneracy"). 

As it might be clear now, the spectral scheme is a 
rigorous theoretical scheme for analyzing the geometrical 
structures of the spacetime in terms of the spectra of the 
space, or the ``sound" of the universe, so to say. Based 
on the spectral representation, we further need to invent 
theoretical tools for completing the scheme. Among them, 
the following three components are the most important 
ones. 
 

(1) The spectral distance between two spaces (Seriu, 
1996) 
(2) The space of spaces (Seriu, 2000a) 
(3) The spectral evolution equations (Seriu, 2000b) 
 

Here let us briefly sketch them one by one. The reader is 
referred to the original articles for more details (Seriu, 
1996, 2000a, b). 
 
 
The spectral distance between two spaces 
 
We often need to compare two geometries  and  , 
judging whether and to what extent they are ``similar" to 
each other.  

For instance, in cosmology we try to investigate the 
dynamics of our Universe by choosing some model 
universe.  The   latter  is   a  mathematical  model  for  our  
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Universe and is usually much simpler with higher 
symmetries than the real Universe. Here the problem 
arises. Due to the highly nonlinear nature of the Einstein 
equation, there is no guarantee for the model universe to 
remain as a ``good" model for the real Universe 
throughout the history of the Universe. If the Einstein 
equation possesses chaotic properties this could be the 
case and we would be forced to give up any reasonable 
predictions for the future or the past of our Universe. This 
fundamental, serious problem in cosmology is often 
called the ``averaging problem"

2
 and still remains 

unresolved. One of the main obstacles for resolving this 
fundamental problem resides in that there has been no 
standard way of quantitatively describing how the model 
universe is ``close" or ''similar" to the real Universe.   

We thus need to define a suitable ``distance" between 
two spaces. From the viewpoint of the spectral 
representation, however, it turns out that we can indeed 
introduce a sort of a distance between two spaces by 
comparing their spectra to each other. The basic idea 
might be symbolically stated that we compare the 
``shapes" of two ``drums" by comparing their ``sound" 
qualities.   

Let  and   be two 
geometries, that is, two Riemannian manifolds

3
. Suppose 

 and  are the spectra for  

and  , respectively, arranged in an increasing order 

( ;).  
Then we define: 
 

,   (1) 
 

which we call the spectral distance between  and . 

Here the zero-modes ( ) are excluded from the 

summation. The summation is up to N to make  
always finite.  

Roughly speaking, the n-th spectrum  reflects the 

geometrical information on the space  of scale , so 
that the smaller and smaller scale information is carried 
by the spectra with larger and larger indices n's. 

                                                 
2Here is the sense of the term ``the averaging problem". The geometry of the 
real Universe should be extremely complicated due to galaxies, stars, hydrogen 

clouds, etc. We expect that a model of the real Universe is obtained by suitably 

``averaging" the real complicated geometry at each point of the Universe and 
forming a smooth geometry with higher symmetries. However there is neither 

satisfactory way of taking the geometrical average of the Universe in a 

relativistically invariant manner nor any guarantee that the averaging procedure 
faithfully preserves the dynamical evolution of the real Universe due to highly 

nonlinear nature of the Einstein equation.  
3 It is important to note that even the dimensions and/or global topologies of   
and  can be different from each other. In general, however, the spectral 

distance between spaces with different dimensionality and/or different 

topologies becomes very large, which can be seen by Weyl's asymptotic 
formula (Chavel, 1984). There are still interesting cases where the spectral 

distance is surprisingly short even though the orientabilities of the spaces are 

opposite to each other (Seriu, 1996). We shall see one example of such cases at 
the end of this subsection. 
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Thus the introduction of the cutoff N corresponds to the 

coarse-grained comparison of the spaces  and , 
neglecting their smaller differences of the scale less than 

. One can then treat N as a running parameter of 

, investigating the scale-dependent comparison 
between two spaces. Finally one can take  when 
the finest comparison is needed.  

This type of scale-dependent comparison of geometries 
is very desirable considering, for instance, the scale-
dependent topology (Seriu, 1993) based on the 
"spacetime foam" picture (Wheeler, 1957) as mentioned 
in the beginning part of this section. 

It turns out that the spectral distance  has 
nice properties (Seriu, 1996). First it satisfies all the 
axioms of distance except for the axiom of triangle 
inequality. Furthermore the breakdown of the triangle 
inequality is a very mild one so that one can construct a 
nice space (called a metrizable space) of all spaces 

based on . Second, in the spectral distance, the 
differences in the lower modes (smaller index n, 
corresponding to the larger scale structures) are counted 
with more importance than the higher modes (larger 
index n, corresponding to the smaller scale structures). 
This is indeed a nice property since two shapes are 
usually judged as close to each other when their larger 
scale properties are similar rather than the smaller scale 

properties. This scale-sensitive property of  is 
desirable for describing the scale-dependent topology of 
the universe, which might be one of the important 
properties of quantum universes.  

It is also quite important to note that the spectral 

distance  is not just a mathematical, abstract 
object, but is an actually computable quantity. For 

instance, the spectral distances , 

,  and 

 are rigorously computed including their 

 behaviors (Seriu , 1996) . Here  and  stand 
for a 2-dimensional torus and a sphere, respectively, that 

are orientable surfaces, while  is a 2-dimensional 
real projective space from which Klein's bottle 

( ) is constructed. The latter two surfaces are 
typical non-orientable surfaces.  Here are some concrete 
results among numerous ones (For definiteness, the area 
of every surface here is normalized to unity). One 
example of the spectral distances between a standard 

torus and a thin torus is   (as 
), while the same between the standard torus 

and an extremely thin torus is  
(as ). One example of the spectral distances 
between a standard torus and Klein's bottle is 

 (as ), which is 
surprisingly short, considering that their orientabilities are 
opposite to each other.  

 
 
 
 
The space of spaces 
 

Since we now have a nice concept of distance between 
two spaces defined by the spectral profiles, we can 
construct an abstract space of ``all spaces".  

Let  be the set of all possible Riemannian 

geometries
4
  equipped with the spectral 

distance , where N is some suitably large 
integer. Then one can rigorously prove that  forms a 
metrizable space, which means that  can be regarded 
as a metric space by a suitable mild modification of 

 (Seriu, 2000a). Therefore  forms a desirable 
space since it means that we can rigorously discuss, for 
instance, how ``close" two spaces are and how a 
geometry dynamically develops in time within . We call 

 the space of spaces. 
As an example, suppose we want to investigate the 

dynamical evolution of a space  (that is, the history of 
the universe ). It is represented by a trajectory in  

starting from . To investigate whether a space  serves 
as a good model for the universe , we can in principle 
compare two trajectories, one for  and the other for . If 
two trajectories are close enough in  , we can judge 
that the model  and its history are good representation 
of the universe .  

In this manner,  serves as a fundamental arena for 
analyzing cosmological questions quantitatively. It is for 
the first time in the history of cosmology such a ``space of 
all universes" has been rigorously constructed. 
 
 

The spectral evolution equations 
 

Since the space (or the universe) evolves in time 
according to the Einstein equation, the spectra also 
evolve in time accordingly. This means that we can write 
down the Einstein equation in the spectral representation. 
We call such a spectral version of the Einstein equation 
the spectral evolution equations (Seriu, 2000b). The 
detailed treatment of the spectral evolution equations is  
 given in the original paper (Seriu , 2000b). 

Here is one of the important results obtained by the 
spectral evolution equations. The Hubble constant H is 
the most important cosmological parameter, which 
determines the age of one Universe. We should note that, 
however, the Hubble constant H is only definable in 
reference to a cosmological model, typically the 
Friedmann-Robertson-Walker model (the FRW model, for 
short). When we try to determine the value of H by 
observing the real Universe, thus, its estimated value is 
heavily influenced by the geometrical discrepancy 
between the real Universe and the FRW model and by 
the observational scale. Here the observational scale is 
typically   determined   by   the  wavelengths  of  the  light 

                                                 
4For concreteness, they are assumed to be compact without boundaries with a 

positive definite metric. However there are no restrictions on the 
dimensionality or orientability. 



 
 
 
 
signals detected in the observations. 

We recall that the FRW model is an idealistic model of 
the Universe with the perfect spatial homogeneity and 
isotropy. Thus the inhomogeneity and anisotropy of the 
real Universe, even if they could be quite tiny, result in the 
geometrical discrepancy between the real Universe and 
the FRW model. 

Now by means of the spectral evolution equations, 
we can derive the following formula (Seriu, 2000b); 

 

                                                (2) 
 

Here  is the effective Hubble constant at the 

observational scale ;  and  are the 
inhomogeneity and anisotropy of the real Universe at the 

same observational scale. Detailed expressions for   

and  is given in Seriu (2000b). Since we estimate the 
age of the Universe by the Hubble constant, we need to 
understand the scale-dependence of the effective Hubble 
constant in more detail. Due to the detections of the 
gravitational waves, more detailed information on the 
inhomogeneity and anisotropy of our Universe is expected 
to be obtained in the near future. Thus the analyses 
based on Equation 2 shall be more and more important 
from now on. Just by this example, one would clearly see 
how the spectral scheme can be effectively applied to 
cosmology. Another, extremely important application of 
the spectral scheme to cosmology in the context of the 
notorious ``averaging problem" is given subsequenly. 
 
 
The Einstein-Hilbert action in the spectral scheme 
 

It is known that all the fundamental equations in nature 
found so far, including the Einstein equation, are derived 
from the action-principle by choosing a suitable action 

, that is a functional of the fundamental variables q's. 

It is not an exaggeration to say that the action is the 
most important quantity in theoretical physics. Indeed, 

once the action  for a certain physical system is 
properly given, all the necessary physical information for 

the system can be derived from . This statement is 
true not only for the classical theories, but also for 
quantum theories, provided that the vacuum state is 
suitably fixed.   

For the case of the Einstein's general theory of relativity 
(Einstein, 1916), the Einstein equation (for an empty 
spacetime) is derived from the action, known as the 
Einstein-Hilbert action,  
 

                                                        (3) 
 

Where  is a D-dimensional spacetime manifold (that is, 
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a D-dimensional pseudo-Riemannian manifold) in 
question, R is the scalar curvature computed from the 

metric tensor , and α is a suitable constant. It means 

that a particular metric  giving the extremum of 

S[ ] with respect to the variation of , characterized 

by δS[ ]=0, is the solution for the Einstein equation 
 

                                                        (4) 
 

where  is the Ricci curvature tensor (Wald, 1984).  
When the cosmological constant Λ is taken into 

account, the action in Equation 3 is modified to  
 

                                 (5) 
 

which yields instead of Equation 4,  
 

                                      (6) 
 
The explicit expression for the constant α in Equations 3 
or 5 is  
 

 
 
where  is the (D-2)-dimensional volume of the unit 

(D-2)-sphere (regarded as dimension-free). For a 

standard case of D=4, reduces to = 4π, so that 

α= . Let L, T and M represent, respectively, the 

physical dimensions of length, time and mass. Then, 

noting [G]=[ ], we see that [α] = [ ] [ ] where 

[ ] is the physical dimension of the Planck constant, i.e. 

the one for the action. Noting also that [R]=[Λ]=[ ] and 

that the spacetime integral yields the physical dimension 
[ ], thus, the right-hand side of Equations 3 or 5 has the 

physical dimension of the action, as it should be. 
In the spectral scheme, we consider the spectra 

 for the geometry  are the 

fundamental variables (rather than the metric tensor  
in the standard framework). Therefore it is desirable if we 
can express the Einstein-Hilbert action in terms of the 
spectra. 

For this purpose, the D-dimensional Euclidean 

spacetime  is considered where  is a compact 

manifold without boundaries
5
 and  is a positive-definite 

metric on . This Euclidean setting is not a serious 
restriction on the theory. Indeed we are mostly  interested 

                                                 
5It is of great interest to consider a manifold with spatial (D-1)-manifolds as 

boundaries. However we here consider only the cases without boundaries for 
simplicity. 
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in the quantum universes in this context, and the 
Euclidean spacetimes are widely considered when 
studying quantum universes. 

Now due to the heat kernel theory for the Laplacian 
operator, the following asymptotic formula is known 
(Chavel, 1984):  

For a small positive parameter s, it follows  
 

,            (7) 
 

where we note that the zero-mode is also included in the 
summation on the left-hand side of Equation 7.  

Comparing Equations 7 with 3, we realize the following: 
Let 
 

                        (8) 
 

Here [s]=[ ], so that . Then we obtain 
the desired formula for the action,   
 

                                                    (9) 
 

In the same manner, comparing Equations 7 with 5, we 
get 
 

                               (10) 
 

We can also consider instead of Equation 8,  
 

                        (11) 
 

where the cutoff N has been introduced in the 
summation. Then the expressions Equations 9 and 10 

with  replaced by  yield the scale-dependent 

actions  and  which naturally 
provides us with the coarse-grained description of 
spacetimes, taking into account the larger scale 
geometrical properties up to the scale N. 

Now let us apply the action  to get some 
insights on the quantum universes. As is well known, the 
quantum transition amplitude from the initial state i to the 
final state f can be estimated by the Euclidean path-
integral  
 

                                        (12) 
 

For the spacetime physics, the quantum regime has not 
been well-understood so far, including the interpretation 
of quantum transition amplitudes for spacetimes, so that 
the rigorous treatment has not been established. 

However, it is quite probable that the spacetimes or the 
universes cannot escape from the quantum principle on 
the microscopic scales just like the normal physical 
systems   and    that    the   formulas   for    the   quantum  

 
 
 
 
spacetimes should have several similarities with those for 
the normal physical systems.   

Let us recall that a typical transition amplitude for 
quantum cosmology, or the ``wave function of the 
Universe" as is customarily called, is generally believed 
to be given by (Hartle and Hawking, 1983).  
 

,                                (13) 
 

where the functional integral is taken over all  
compatible with Euclidean manifolds without boundaries 

and the action  is given by Equation 3 or Equation 

5. One of the main difficulties of this expression is that  
contains unphysical components due to the general 
covariance of the theory (that is the gauge freedom of the 
general relativity theory caused by the freedom of the 
choice of coordinate systems) so that the functional 

integral over  is not an easy task nor a procedure, 
requiring a full machinery of the gauge-fixing, the ghost 
fields, and so on, known as the Fadeev-Popov technique. 
Even worse, it turns out that this technique does not work 
satisfactorily for the case of gravity contrary to the cases 
of the non-Abelian gauge theories (Ryder, 1996). 

In the spectral scheme, on the other hand, the 
transition amplitude (the ``wave function of the universe") 
might be given as  
 

,                          (14) 
 

where the integral is taken over all the spectra { } 
compatible with Euclidean manifolds without boundaries 

and the action  is given by Equations 9 or 10. As 
discussed previously, the spectra are diffeomorphism 
invariant quantities (that is, gauge-invariant quantities in 
this context), so that no difficulty arises in taking the 

integral over all the spectra { }. Thus the expression 
Equation 14 is conceptually much more transparent than 
the standard expression Equation 13.  

The expression Equation 14 implies that the quantum 
spacetime is a superposition of various geometries and 
topologies corresponding to the various spectra { }. 

Furthermore if we replace  with the scale-
dependent action  (with a cutoff scale N) it 
might be also possible to analyze the scale-dependent 
properties of quantum universes such as the spacetime-
foam structures of spacetimes. 

However there are several things to be cleared. One 
important issue is how to effectively perform the path-
integral in Equation 14.   
 
 

SOME COMMENTS ON THE APPLICATION OF THE 
SPECTRAL SCHEME 
 

There are several important  applications  of  the  spectral  



 
 
 
 
scheme. Among them is its applications to the so-called 
``averaging-problem" in cosmology (Seriu , 2000 , 2001). 
As briefly discussed, the evolution of the universe 
governed by the Einstein equation, which is highly non-
linear, can be a chaotic one though there has been no 
detailed investigations on this subject so far. If this would 
be the case, even the slightest modification in the initial 
conditions results in a totally different future or past, 
which makes any prediction for the future nor the past on 
the Universe impossible. Though this is a very serious 
primary problem of cosmology itself, causing a 
fundamental doubt as ``whether cosmology is possible" 
(Seriu, 2000, 2001), there has been no decisive 
argument on this problem. One of the main obstacles for 
tackling this issue is that there has been no useful 
framework for comparing geometries quantitatively. We 
need to compare the real Universe with its model and to 
judge how they are close to each other quantitatively. It is 
clear that the spectral scheme provides a fundamental 
framework for this type of analyses.  

In Seriu (2001), the averaging problem in cosmology 
has been explicitly and quantitatively analyzed by means 
of the spectral scheme for the first time.  

First the FRW model with small perturbations of 
inhomogeneity and anisotropy has been prepared, 
regarded as a mathematical representation of the ``real 
Universe". Then the spectral distance between this 
modified FRW model and the pure FRW model has been 
investigated. In particular, with the help of the spectral 
evolution equations, the time evolution of the spectral 
distance has been estimated within the linear perturbation 
regime. The typical time-evolution of the spectral distance 
has turned out to be  
 

,                                 (15) 
 
when relatively shorter scale geometrical behaviors as 
well as the global features of the Universe are taken into 
account. Here ν = p/ρ, the ratio of the pressure p and the 
energy density ρ, is a dimension-free parameter 
describing the matter content profile in the Universe 

(  for normal matter); the horizon scale at the 
time of concern is the standard for ``short" and ``long". 
Similarly, we also get   
 

 ,                                             (16) 
 

when only the most global features of the Universe are 
taken into account.  

Here the results Equations 15 and 16 show that at least 
within the linear regime, the spectral distance tends to 
converge in time, indicating that the FRW model remains 
as a good model at least within the time-scale in which 
the linear approximation is valid. In other words, 
cosmology as our attempt to understand the real 
Universe in  reference  to  a  model  is  guaranteed  to  be  
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valid at least within the linear regime. Needless to say, 
this is just the beginning of study and we should tackle 
the more important nonlinear phases. 

It should be emphasized, however, that this analysis is 
the first rigorous quantitative attempt to solving the 
averaging problem in cosmology. There have been only 
preliminary studies along this line (Seriu, 2000, 2001), so 
that it is desirable that more intensive investigations are 
done on this fundamental problem making full use of the 
spectral scheme. 

Regarding the possible chaotic property of the 
evolution of the universe, the author has been proposing 
a conjecture that the chaotic properties of a system 
should get suppressed and tends to disappear as the 
number of degrees of freedom of the system approaches 
infinity. Indeed virtually all the chaotic dynamical systems 
known so far have only the finite number of degrees of 
freedom. It is quite probable that the fundamental fact 
that the Universe is in principle an infinite existence is the 
key for understanding this problem. It might be helpful to 
mention that the above conjecture results from, in a 
sense, a strong belief that we should be intelligent 
enough to reveal the mysteries of the Nature fully, or in 
other words, that the Nature should be kind enough to 
allow us to understand her fully. If the evolution of the 
universe would be a chaotic one, we would be forced to 
give up guessing anything about the future and the past 
of our Universe; this could not be the case, considering 
the preliminary results (Equations 15 and 16) and the 
above-mentioned belief along with all the great triumphs 
of theoretical physics in history, including the triumph of 
the general theory of relativity by Einstein in 1916.  

By these considerations, the above-mentioned 
conjecture on the relation between the chaotic property 
and the number of degrees of freedom seems the only 
reasonable possibility. The belief on the human 
intelligence combined with logical deductions turned out 
to have a power of yielding a meaningful conjecture and 
one would even imagine regarding the belief as one of 
the fundamental principles in physics. The author has 
coined this belief, regarded as a principle, the ``Faust 
principle", named after the main character of Goethe's 
famous novel, who dreams of understanding the whole 
aspects of life.  

As sketched briefly previously, the spectral scheme 
may also be an effective tool for studying quantum 
spacetimes. This is because the spectra naturally carry 
the information on the global topology of a spacetime as 
well as other geometrical information. In quantum 
spacetimes and quantum universes it is expected that 
spacetimes with various topologies are appearing and 
disappearing by the quantum fluctuations. The spectral 
scheme is expected to be effective for dealing with such 
situations. One such problem is the quantum 
decoherence between two universes with different 
topologies. There are some evidences that the spectral 
distance between two universes can be a useful measure  
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of their quantum decoherence (Seriu, 1996). This type of 
analysis in quantum universes has not yet been explored 
enough and more investigations are desirable.  

Finally we should mention that, contrary to its 
drastically different appearance from a standard one, the 
spectral scheme is in principle widely applicable to 
problems in spacetime physics and cosmology in so far 
as they can be dealt with by the standard framework 
based on the metric tensor. This is because spacetimes 
which can be handled by the standard framework mostly 
possess several spatial symmetries and because the 
spectra of the spaces with high symmetries can be 
explicitly computed. Furthermore, as we have seen 
above, the spectral scheme can deal with the problems 
with which the standard framework cannot handle, such 
as the averaging problem in cosmology, so that it is clear 
that the spectral scheme has its own advantages over the 
standard framework.  

In this paper we have seen only some of the results 
provided by the spectral scheme and we expect that 
much more intriguing results are awaited. 
 
 
CONCLUSION 
 
In this paper, we have reviewed the basics of the spectral 
scheme whose motto is ``Let us hear the shape of the 
Universe!" Then we have presented some recent 
developments of the scheme including the spectral 
expression of the Einstein-Hilbert action and its 
application to quantum spacetimes. 
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