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High performance is the most important expectation from concrete which is commonly used in today’s 
construction technology. To form a high performance concrete “HPC”, two fundamental properties are 
required. These properties are optimization of the materials used to form the concrete and the 
workability of fresh concrete during shaping. Many scientists have used rheological properties in 
conjunction with Bingham model to determine the workability of fresh concrete. Bingham model is 
represented by two parameters: yield stress and plastic viscosity. Even though, many models are 
developed to explain rheological properties, there is no acceptable easy to use method. In this study, 
artificial neural network “ANN” is used to determine the rheological properties of fresh concrete. 
Ferraris and de Larrard’s experimental slump, yield stress and viscosity data from different composed 
concretes is used in this study. Slump, yield stress and viscosity are estimated with respect to mixture 
design parameters. Obtained results from this study indicates that ANN is a utilizable method to 
determine the rheological proporties (Bingham model) of fresh concrete. 
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INTRODUCTION 
 
Normal concrete is a composition of cement, fine 
agregate, coarse aggregate, and water. It is designed to 
obtain a mixture of certain characteristics and is one of 
the most commonly materials used in the world. The 
recent technical improvements and innovations have 
enhanced not only the quality of concrete, but also the 
fields of its usage. Today’s concrete technology makes 
the production of concrete with high quality and of high 
performance to meet specific needs. The desired high 
quality in concrete is only possible, if it has high 
compacity without seggregation during moulding, and 
forming and if it has the characteristics of workability. It 
needs to have a special mixture design and rheological 
properties, in order to have such a result. The selection of 
mix proportions of high performance concrete “HPC” is a 
process of choosing suitable concrete ingredients and 
determining their relative quantities with an objective of 
producing as economically as possible concrete of certain 
required properties, namely workability, strength, and 
durability   (Metha   and  Aïtcin,  1990).  However,  the  main 

problem for HPC mix proportion design lies in establishing 
analytical relationships between the mix composition and 
the properties of concrete (Parichatprecha and 
Nimityongskul, 2009). There are unidentified, complex 
relationships between the characteristics and diversities 
of the components that form HPC. 

As concrete construction applications become more 
demanding, there is an increasing pressure on engineers 
to ensure high workability while at the same time to 
maintain the structural properties necessary to meet 
design specifications (Saak et al., 2004). Moreover, each 
mixture added to normal concrete generates an important 
effect on workability. For production of high performance 
concrete “HPC” that is characterized by low water-cement 
ratio and a high dosage of super plasticizer “SP”, 
workability properties may be more complex than that of 
the normal concrete (Kwan, 2000). The workability 
prediction of concrete is an important piece of information in 
the design process of concrete mixture. Especially, with the 
development  of   concrete   technology,   HPC   has   been  
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increasingly used in practice. There is, therefore, an urgent 
need to take a consistent and reliable approach to estimate 
the workability of concrete made with modern materials 
(Yeh, 2008). An inexpensive and efficient workability 
design is to predict and further optimize the workability of 
concrete by flow simulation for the selected construction 
processes, e.g. transportation, casting, compaction, 
finishing, etc. Clarifying and modeling the rheological 
behaviors of fresh concrete, and establishing a suitable 
flow analysis method are the most basic conditions of 
workability design (Li, 2007).   

Ferraris (1999) defined the workability either 
qualitatively as the ease of placement or quantitatively by 
rheological parameters. Tattersall’s (1976), interpretation 
of workability is “the ability of concrete to flow in mould or 
formwork perhaps through congested reinforcement, the 
ability to be compacted to a minimum volume, perhaps 
the ability to perform satisfactorily in some transporting 
operation or forming process and may be other require-
ments as well”. According to Tattersall (1976), the most 
common rheological parameters of the flow concrete, 
used to qualify workability, are the yield stress and plastic 
viscosity as defined by the Bingham equation. It has 
become insufficient to use the slump test to characterize 
consistency of new types of concrete, and the 
consistency set empirically is likely not to meet the actual 
demands.  

Therefore, workability design of concrete has become 
necessary, which is a process of optimizing concrete's 
consistency to be well adapted for certain structure and 
construction conditions. The establishment of rheological 
test method and workability design technology is an 
extremely important problem awaiting solution in fresh 
concrete sphere (Li, 2007). Workability tests are useful 
as quality control tools, but these are largely qualitative 
measures based on arbitrarily defined scales. Several 
authors have acknowledged the need for a more 
quantitative measure of the workability of fresh concrete 
(Tattersall and Banfill, 1983; Tattersall, 1991).  

Researchers treat fresh concrete as fluid and use fluid 
rheology methods to describe concrete behavior (Laskar 
and Talukdar, 2008). Numerous constitutive equations 
have been proposed to characterize the rheology of fresh 
concrete as suspensions, but only Bingham model and 
Herschel and Bulkley “HB” model have received wide 
acceptance (Chidiac and Mahmoodzadeh, 2009). 
Concrete as a fluid is most often assumed to behave like 
a Bingham fluid with good accuracy (Laskar and 
Talukdar, 2008). Bingham fluid have got two 
characteristics; yield stress and plastic viscosity. These 
two parameters were first used by Tattersall using the 
definition given by the Bingham equation as follows 
(Ferraris and de Larrard, 1998).   
 

                (1) 
 

τ = shear stress (Pa) applied to the fresh concrete,  τ0 = 
yield stress   (Pa),  µ = plastic  viscosity   (Pa.s)   and   γ =  

 
 
 
 
shear strain rate.    
 

Yield stress gives the quantitative measure of initial 
resistance of concrete to flow and plastic viscosity 
governs the flow after it is initiated. Yield stress is the 
contribution of the skeleton that is, It is a manifestation of 
friction among solid particles. It is the result of an 
accumulative contributions of each granular class. These 
contributions involve size and roughness of particles and 
high range water reducing admixtures “HRWRA”. Plastic 
viscosity is the contribution of suspending liquid that 
results from viscous dissipation due to the movement of 
water in the sheared material. Plastic viscosity appears to 
be controlled essentially by the ratio of solid volume to 
the packing density of granular mixture, including aggre-
gates and cement (Ferraris and de Larrard, 1998).  These 
two rheological properties are therefore needed to 
quantitatively characterize the flow of fresh concrete 
(Chidiac and Mahmoodzadeh, 2009; Chidiac and 
Habibbeigi, 2005). Quantitative characterization of the 
rheological properties is important to the sustainability of 
the concrete construction industry for the following 
reasons: (1) workability of fresh concrete forms one of the 
bases of concrete mixture design for quality control 
purposes – establishing a quantitative measure for work-
ability will mitigate material waste by properly controlling 
the quality of fresh concrete as a priority; (2) flow 
behaviour of fresh concrete impacts the quality of con-
crete hardened properties (Chidiac and Mahmoodzadeh, 
2009; Chidiac et al., 2000). 

In an attempt to quantify the rheological behaviour of 
fresh concrete, rheometers of different types and qualities 
have been developed. One of the most famous and 
oldest tests is the slump test. Because of its simplicity, 
this method is used extensively in site work all over the 
world. The apparatus was developed in the USA around 
1910. It is believed that it was first used by Chapman 
although in many countries the test apparatus is 
associated with Abrams. The slump test gives only a 
single value, namely the slump value. It discusses the 
need for describing the rheological properties of fresh 
concrete in terms of fundamental physical quantities, not 
depending on the details of the apparatus with which 
they are measured (Wallevik, 2006). Slump, which has 
been correlated to yield stress, is not a sufficient 
measurement for characterizing the flow properties of 
fresh concrete.  

The most common approach adopted for quantifying 
the rheological properties of fresh concrete is to 
experimentally measure shear stress versus shear strain 
rate using concrete rheometer. Several research efforts 
have been made to develop equations for predicting the 
yield stress of concrete (Chidiac and Mahmoodzadeh, 
2009). Some researchers tried to create empirical or 
analytical equations that relate the yield stress of concrete 
to its measured slump, since in practice the slump test is 
routinely measured for quality control (Saak et al., 2004; 
Ferraris and de  Larrard,  1998;  Wallevik,  2006;  Murata,  



 
 
 
 
1984; Murarta and Kikukawa, 1992; Al Martini and Nehdi, 
2009; Cazacliu and  Roquet, 2009; Patzák and Bittnar, 
2009).  

Fundamental models proposed to quantify plastic 
viscosity are based on the science of rheology and fluid 
mechanics. These models are divided into two groups. 
The first group includes the models that are prevailing in 
concrete technology, whereas the second group compiles 
the models proposed to quantify the plastic viscosity of 
concentrated suspensions in solvent, typically used for 
other engineering applications (Chidiac and 
Mahmoodzadeh, 2009). The representatives of the 
important models for the first group are given by Murata 
and Kikukawa (1992), Hu and deLarrard (1996) and 
Roshavelov (2005) in the literature. The models of the 
second group are classified to four sub-groups as gene-
ralized models, analogous approach, cell method, and 
average method (Chidiac and Mahmoodzadeh, 2009). 
 
 
MATERIALS AND METHODS 
 

Modern research in material modeling aims to construct mathematical 
models to describe the relationship between material behaviours and 
compositions (Yeh, 2008). However, when there are nonlinearities 
between the dependent variables and independent variable and 
interactions between dependent variables, it is very difficult to find an 
accurate model for simulating material behaviour. Artificial neural 
networks “ANN” provide a fundamentally different approach to the 
derivation and representation of material behaviour relationships 
(Ghaboussi et al., 1991). A neural network is a computer model whose 
architecture essentially mimics the knowledge acquisition of the 
human brain. Artificial neural networks may take various forms and are 
applicable to a wide variety of problems (Yeh, 2008). A number of 
applications in material have been proposed by several researchers 
(Yeh, 1999; Nehdi et al., 2001; Yeh, 2005; Ji et al., 2006; Sobhani et 
al., 2010; Nehdi and Al Martini, 2009). However, little research has 
been done on the modeling workability of concrete using neural 
networks. The basic strategy for developing a neural network for 
material behaviour is to train it with the results of a series experiments 
on a material. If the experimental results contain the relevant 
information about the material behaviour, then the trained neural 
network would contain sufficient information about the material 
behaviour (Ghaboussi et al., 1991).  

The neural network modeling approach is simpler and more direct 
than traditional statistical methods, particularly when modeling nonlinear 
multivariate interrelationships (Ji et al., 2006). The main advantage of 
ANNs is that one does not have to explicitly assume a model form, 
which is a prerequisite in the parametric approach. Indeed in ANN’s, a 
relationship of possibly complicated shape between input and output 
variables is generated by the data points themselves. In response to the 
complex interaction between concrete behaviours and concrete mix 
proportions, many researchers have applied neural networks to predict 
various properties of concrete (Parichatprecha and Nimityongskul, 
2009). As a result, identifying rheological characteristics of fresh 
concrete by means of theoretical approaches is relatively hard. ANN 
method was used in this study to determine rheological characteristics 
of fresh concrete with regard to mixture parameters. In the study, the 
experimental data that were shown in Table 1 and supplied by Ferraris 
and de Larrard were used as materials.  
 
 

Multılayer perceptıon-MLP 
 

A general structure of an artificial neural networks  model  is  shown  
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in Figure 1 (Haykin, 1994). There are three types of layers in the 
feed-back ANN model; the layer of input, the hidden layer and the 
layer of output. Each layer of the network is composed of 
processing units that have certain characteristics. The input layer 
possesses processing units which represented by xi in the figure. In 
this layer, the duty of processing units is to transfer the input data to 
the hidden layer.  

These units do not perform summation and tranformation 
operations and as they act as bumpers, they do not use a transfer 
function. Also, the processing units in input layer, do not have bias 
inputs. The hidden layer is composed of processing units 
represented by zj. The task of the hidden layer is to transfer the data 
coming from input or from previous hidden layers, to layer of output 
or to the next hidden layer. Connection weights of hidden layer 
processing units were represented by wji in Figure 1. Here, indice j 
represents the number of hidden layer processing units, and indice i 
represents the number of input layer processing units. The weight 
between the hidden layer processing units and bias, on the other 
hand is represented by wj0.  

In Figure 1, the layer of output is composed of processing units 
represented by yk. The output layer processing units transfer the 
hidden layer processing unit outputs to the network output,. The 
connection weights between hidden layer, and output layer were 
represented by wkj. Here, indice k represents the number of output 
layer processing units, and indice j represents the number of hidden 
layer processing units. The connection between output layer and 
bias is represented by wk0. In this study, the estimation of slump 
value and Bingham parameters of fresh concrete is carried out 
using a Multi-Layered Perception (MLP) neural network. In 
literature, the most frequently used algorithm to train a MLP is the 
back propagation algorithm (Rumelhart et al., 1986). In this 
algorithm, weight optimization during training process is 
accomplished using the weight update formulas which are given as 
a function of output (activation level) of neurons as follows  
 

                (2) 

 

                               (3) 

 
Where, Yi is the output of ith neuron in the input layer, Yj is the 
output of jth neuron in the hidden layer, Yk is the output of kth 
neuron in the output layer, and  is the change in the weight 
strength. 

 
 
Estımatıon of slump value and bıngham paramaters usıng ANN  

 
Almost all researchers treated fresh concrete as a liquid, and they 
introduce flow rheology to define concrete flow. As a general 
approach, it is assumed that the speed of every particle is equal in 
the microscobic speed of homogeneous fluid in fresh concrete. If 
the flow is steady, the current is most likely laminar regimed. That is 
to say, it constitutes Bingham model as pressure gradient that will 
act on shear stress remains proportional. However, a great deal of 
methods in this model measures merely one parameter, yield 
stress. There is not a common method in use though a great many 
attempts have been made, because predicting flow characteristics 
is attained from concrete components.  Therefore, the most trusted 
results are collected by experimental methods. Based on finite 
element analysis of the slump test and on measurement of the yield 
stress using the rheometer and of the slump, Hu proposed a 
general formula retating the slump s to the yield stress (Tattersall, 
1976; Ferraris and de Larrard, 1998). In his study, he stated that 
yield stress and slump values are coherent in Bingham model. 
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Table 1. Fresh concrete mixture parameters and rheological properties. 
 

Dry mixture mass (%) Composition (kg/m
3
) 

Slump 

Bingham flow 

Gravel Sand 
Fine 
sand 

Cement Gravel Sand 
Fine 
sand 

Cement 
Super 

Pasticizer SP 
Water 

Yield 
stress 

Viscosity 

45.0 29.0 9.0 17.0 957 617 191 362 -- 200 80 1717 174 

45.0 29.0 9.0 17.0 952 614 190 360 -- 204 100 1489 163 

45.0 29.0 9.0 17.0 947 611 189 358 -- 208 130 1219 160 

45.0 29.0 9.0 17.0 943 607 189 356 -- 212 165 881 133 

45.0 29.0 9.0 17.0 938 604 188 354 -- 216 225 802 84 

48.0 30.9 9.6 11.4 1006 648 201 240 -- 204 55 1387 285 

48.0 30.9 9.6 11.4 996 642 199 237 -- 212 125 1037 163 

48.0 30.9 9.6 11.4 986 635 197 235 -- 220 170 1185 130 

24.0 49.3 15.3 11.4 483 993 308 230 -- 235 35 1385 258 

24.0 49.3 15.3 11.4 478 983 305 228 -- 243 60 1206 200 

24.0 49.3 15.3 11.4 473 972 302 226 -- 251 185 799 127 

57.6 19.3 6.0 17.0 1207 405 126 356 -- 212 80 1906 147 

57.6 19.3 6.0 17.0 1201 403 125 354 -- 216 135 1679 209 

57.6 19.3 6.0 17.0 1194 401 124 352 -- 220 185 1913 223 

22.5 46.2 14.3 17.0 460 944 293 347 -- 231 95 1008 208 

22.5 46.2 14.3 17.0 455 934 290 344 -- 239 95 951 172 

22.5 46.2 14.3 17.0 450 925 287 340 -- 247 160 839 90 

0.0 63.4 19.7 17.0 0 1207 375 323 -- 284 55 2216 73 

0.0 63.4 19.7 17.0 0 1193 370 319 -- 292 70 2036 77 

0.0 63.4 19.7 17.0 0 1179 366 316 -- 300 65 2132 96 

52.0 17.4 5.4 25.1 1093 367 114 529 -- 220 12 1473 183 

52.0 17.4 5.4 25.1 1081 363 113 523 -- 228 155 1147 147 

52.0 17.4 5.4 25.1 1070 359 111 518 -- 236 195 752 117 

40.6 26.2 8.1 25.1 851 549 170 527 -- 222 105 1688 146 

40.6 26.2 8.1 25.1 843 543 169 522 -- 230 170 1090 111 

40.6 26.2 8.1 25.1 834 537 167 517 -- 238 205 888 59 

20.3 41.7 12.9 25.1 413 849 264 512 -- 244 105 1432 75 

20.3 41.7 12.9 25.1 409 840 261 507 -- 252 150 1068 73 

20.3 41.7 12.9 25.1 405 831 258 501 -- 260 225 733 34 

0.0 57.2 17.7 25.1 0 1107 344 486 -- 282 80 1702 52 

0.0 57.2 17.7 25.1 0 1094 340 481 -- 290 170 1123 35 

0.0 57.2 17.7 25.1 0 1082 336 475 -- 298 210 1024 46 

0.0 51.1 15.9 33.0 0 984 305 635 -- 296 115 1195 48 

0.0 51.1 15.9 33.0 0 973 302 328 -- 304 175 976 36 

0.0 51.1 15.9 33.0 0 961 298 621 -- 312 230 731 25 

45.0 28.0 8.0 19.0 1015 632 180 429 10.71 155 215 649 499 

45.0 28.0 8.0 19.0 1012 630 180 427 10.68 158 180 593 517 

45.0 28.0 8.0 19.0 1009 628 179 426 10.65 160 205 473 530 

45.0 28.0 8.0 19.0 1003 624 178 423 10.59 165 235 141 439 

57.0 18.7 5.3 19.0 1278 419 120 426 10.66 160 150 1216 544 

57.0 18.7 5.3 19.0 1270 416 119 424 10.59 165 120 893 437 

21.2 43.0 12.3 23.5 468 947 271 519 12.97 181 150 1055 519 

21.2 43.0 12.3 23.5 465 941 269 516 12.87 186 225 363 589 

21.2 43.0 12.3 23.5 462 935 267 513 12.81 191 260 115 401 

0.0 56.0 16.0 28.0 0 1173 335 587 14.67 228 145 200 303 

0.0 56.0 16.0 28.0 0 1164 332 582 14.55 234 200 465 424 

50.6 16.6 4.7 28.1 1139 373 107 632 15.79 170 245 90 586 

50.6 16.6 4.7 28.1 1132 371 106 628 15.69 175 250 61 535 

20.0 40.4 11.6 28.0 440 890 254 617 15.42 189 270 47 528 
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Table 1. Contd. 
 

0.0 49.2 14.1 36.8 0 1050 300 785 19.63 225 280 145 694 

0.0 49.2 14.1 36.8 0 1039 297 777 19.43 233 285 204 371 

0.0 49.2 14.1 36.8 0 1028 294 769 19.22 241 290 250 155 

0.0 42.6 12.2 45.3 0 901 257 957 23.93 244 290 89 695 

0.0 42.6 12.2 45.3 0 891 255 947 23.67 252 290 123 429 

45.0 28.8 8.8 17.4 952 609 186 369 2.13 205 240 432 121 

45.0 28.6 8.6 17.8 966 614 184 383 4.26 194 235 294 205 

45.0 28.4 8.4 18.2 980 618 183 397 6.39 182 220 77 295 

45.0 28.2 8.2 18.6 995 623 181 412 8.52 171 220 33 394 
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Figure 1.  Feed-back artificial neural network model.  

 
 
 

In Figure 3, the correlation between experimental slump values 
and experimental yield stress in Bingham model is easily seen, and 
it can represent yield stres values of slump values. Ferraris and de 
Larrard, modifying Hu model, proposed an equation that could 
predict yield stress in Bingham model with respect to mesured 
slump values. In Figure 4, the linear correlation of experimental 
yield stress values, and theoretical yield stress was given. It is the 
gradient of shear rate of which viscosity was determined with 
rheometer in fresh concrete. It is not possible to measure with 
slump values. But Ferraris and de Larrard (1998) proposed 
viscosity calculation method according to slump values. The linear 
correlation between theoretical viscosity and experimental viscosity 
calculated by means of that method was shown in Figure  5.  In  the  

correlation, a coefficient as high as 0.71 was obtained. 
In this study, the usability of ANN method to determine rheolo-

gical parameters of fresh concrete was investigated. Accordingly, 
the correlation of the results of rheological characteristics of fresh 
concrete, that was attained by means of ANN method and the 
experimental data were evaluated. The network used in this study 
is shown in Figure 2. It has a structure with three layers, and it has 
six inputs and three outputs. The inputs are gravel, sand, fine sand, 
cement, water, and super plasticizer “SP”. The outputs are slump, 
yield stress and viscosity. The number of cells in the hidden layer is 
to ten based on the experiments conducted during training. To test 
the accuracy of the trained network,  the  coefficient  of  deter-
mination  R

2 
 was  adopted.  The  coefficient  is  a  measure  of  how  
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Water 

SP 
 

 
Figure 2.  Structure of application artificial neural network. 

 
 
 

 
 
Figure 3. Experimental slump-yield stress correlations. 

 
 
 
well the considered independent variables account for the 
measured dependent variable. The higher the R

2
 value is the better 

the prediction relationship. 
 
 

DISCUSSION 
 

The ANN has been trained using various  training  settings. 

The mixture ingredients that comprised the concrete were 
sorted into two groups based on their “Dry mixture 
masses”, and “Compositions” as shown in Table 2. 
Additionally, from these group of data, three sub-groups 
have been constructed as shown in Table 2. ANN is 
trained using Levenberg-Marquardtmethod which is 
implemented in Matlab as “trainlm”  function.  This  is  the  
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Figure 4. Experimental and theoretical yield stress correlations. 

 
 
 

 
 
Figure 5. Experimental and theoretical viscosity correlations. 
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Table 2. Input data groups for ANN. 
 

Group A  data Group B data 

Dry mixture mass (%) Composition (kg/m
3
) 

1 2 3 1 2 3 

Gravel Gravel Gravel Gravel Gravel Gravel 

Sand Sand Sand Sand Sand Sand 

Fine sand  Fine sand  Fine sand  Fine sand  Fine sand  Fine sand  

 Cement  Cement  Cement  Cement  Cement  Cement 

Water Water Water Water Water Water 

 SP Without SP + SP  SP Without SP + SP 

 
 
 

 
 
Figure 6. Experimental and ANN model slump correlations (without SP dry mixture 
mass (%)). 

 
 
 

best function which gives the smaller training error 
compared to the rest of algorithms availabe in Matlab. A 
part of data shown in Table 1 is used to train ANN. The 
performance of ANN is evaluated using the rest of data 
which has not been used in training session. In all 
training and test processes the groups of data shown in 
Table 2 were used and results are shown in Figures 6 -
23. As it can be shown from the figure ANN is able to 
give succesfuly functional relation between input para-
meters, which are the ingridient factor, and the workability 
of the concrete.   

In this study, the usability of ANN method to  determine  

rheological parameters of fresh concrete was 
investigated. Accordingly, the correlation of the results of 
rheological characteristics of fresh concrete, that was 
attained by means of ANN method and the experimental 
data were evaluated and shown in Figures 6 - 23. The 
correlation coefficients of the results obtained were 
shown in Table 3. Rheological characteristics of fresh 
concrete determined by ANN method cohered with the 
experimental data, as shown in Table 3. Rheological 
properties of fresh concrete could be determined getting 
quite high R

2
 values both in cases the ingredients of the 

concrete   were   composed  as  per  their  values  of   dry   
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Table 3. Correlation coefficients of the data determined by means of ANN method and the experimental data. 
 

Rheological 
properties 

Group A  data Group B data 

Dry mixture mass (%) Composition (kg/m
3
) 

Without SP 
(R

2
) 

With SP 
(R

2
) 

Without SP+SP 
(R

2
) 

Without SP 
(R

2
) 

With SP 
(R

2
) 

Without SP+SP 
(R

2
) 

Slump 0.91 0.93 0.92 0.94 0.92 0.87 

Yield stress 0.95 0.88 0.97 0.87 0.95 0.95 

Viscosity 0.89 0.93 0.91 0.91 0.95 0.91 
 
 
 

 
 
Figure 7. Experimental and ANN model slump correlations 
(With SP Dry mixture mass (%)). 

 
 
 

 
 
Figure 8. Experimental and ANN model slump correlations 
(without SP+SP dry mixture mass (%)). 

 
 
Figure 9. Experimental and ANN model slump correlations 
(Without SP Composition (kg/m

3
)). 

 
 
 

 
 
Figure 10. Experimental and ANN model slump 
correlations (with SP composition (kg/m

3
)) 



1762            Sci. Res. Essays 
 
 
 

 
 
Figure 11. Experimental and ANN model slump correlations 
(without SP+SP composition (kg/m

3
)). 

 
 
 

 
 
Figure 12. Experimental and ANN model yield stress correlations 
(without SP dry mixture mass (%)). 

 
 
 
mixture masses (%), or composition (kg/m

3
) values. 

However, R
2
 values of the dry mixture mass group in 

which the rheological values were evaluated without SP 
and SP were determined to have been higher that those 
of the composition group. 

 
 
 
 

 
 
Figure 13. Experimental and ANN model yield stress correlations 
(with SP dry mixture mass (%)). 
 
 
 

 
 
Figure 14. Experimental and ANN model yield stress correlations 
(Without SP+SP Dry mixture mass (%)). 
 
 
 

Conclusion 
 

In this study, the following results were achieved through 
the ANN method used to determine rheological 
characteristics of fresh concrete. 
 

(i) The   slump,   yield   stress   and  viscosity   data  of  the  



 
 
 
 

 
 
Figure 15. Experimental and ANN model yield stress correlations 
(Without SP Composition (kg/m

3
)). 

 

 
 

 
 
Figure 16. Experimental and ANN model yield stress 
correlations (with SP composition (kg/m

3
)). 

 
 
 

experimental studies of Ferraris and de Larrard were 
used as input for this study. Calculations were carried out 
using the yield stress, and viscosity equations developed 
by the authors and included in the literature. Their 
correlations are shown in Figures 4 and 5. According to 
correlation constants R

2
 = 0.68 and R

2
 = 0.71 are 

obtained. 
(ii) Dry mixture mass (%) and Composition (kg/m

3
) values  
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Figure 17. Experimental and ANN model yield stress correlations 
(without SP+SP composition (kg/m

3
)). 

 
 
 

 
 
Figure 18. Experimental and ANN model viscosity correlations 
(Without SP Dry mixture mass (%)). 

 
 
 

of ingredient materials of fresh concrete were used as 
different inputs in ANN method. Higher correlations (R

2
 = 

0.92, R
2
 = 0.97, R

2
 = 0.91)  were obtained in slump, yield 

stres, and viscosity values with the outputs when the 
complete materials (Group A - 3) in the dry mixture 
masses  (%)  of  the  mixture  were  evaluated, as seen in  
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Figure 19. Experimental and ANN model viscosity correlations 
(with SP dry mixture mass (%)). 

 
 
 

 
 
Figure 20. Experimental and ANN model viscosity correlations 
(Without SP+SP Dry mixture mass (%)). 
 
 
 

Figures 8, 14, and 20. 
(iii) Higher correlations (R

2
 = 0.87, R

2
 = 0.95, R

2
 = 0.91) 

were obtained in slump, yield stres, and viscosity values 
with the outputs when the complete materials (Group A - 
3) in the Composition (kg/m

3
) of the mixture were 

evaluated, as shown in Figures 11, 17, and 23. 

 
 
 
 

 
 
Figure 21. Experimental and ANN model viscosity correlations 
(Without SP Composition (kg/m

3
)). 

 
 
 

 
 
Figure 22. Experimental and ANN model viscosity correlations 
(with SP composition (kg/m

3
)). 

 
 
 

(iv) The values of parameters of Bingham model (yield 
stres and viscosity) can be determined with a high 
accuracy with correlation coefficients within the interval 
R

2
 = 0.91~0.97. 

(v) Regarding the obtained results, it has been decided 
that the ANN is a viable and usable method in 
determining    rheological   characteristics   (by   Bingham 



 
 
 
 

 
 
Figure 23. Experimental and ANN model viscosity correlations 
(without SP+SP composition (kg/m

3
)). 

 
 
 

model) of fresh concrete.  
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