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In this paper, a new fuzzy forgetting factor (FFF) is developed in order to aid a modified input estimation 
(MIE) technique and enhance its performance in tracking high maneuvering targets. The MIE has been 
introduced recently and succeeds in presenting reasonably accurate target trajectory, velocity and 
acceleration estimation in low and mild maneuvering situations. However, after some iteration its steps 
become small. Due to small steps, the accuracy of target tracking may be seriously degraded in the 
presence of high maneuvers. In this study we present an intelligent self-tuning approach based on a 
fuzzy forgetting factor in order to enjoy satisfactory tracking performance in low, Medium and high 
maneuvering target cases. Simulations visualize the efficiency of the proposed method and emphasize 
on its accuracy in tracking high maneuvering targets. Furthermore, simulation results illustrate that 
proposed method is not sensitive to the sampling time.      
 
Key words: High maneuver target tracking, modified input estimation (MIE), fuzzy logic, self- tuning, forgetting 
factor. 

 
 
INTRODUCTION 
 
Although the linear Kalman filter (KF) has been broadly 
used for the tracking problem, its performance may be 
seriously shrunk if the target maneuvers (Lee et al., 2004). 
To deal with unknown and fast target accelerations, many 
techniques and methods have been suggested during last 
years (Duh et al., 2004; Cardillo et al., 1999). The methods 
used for Maneuvering Target Tracking (MTT) problem are 
roughly categorized into two main approaches: Input 
estimation (IE) techniques (Lee and Tahk, 1999; Whang et 
al., 1994) and Multiple Model (MM) methods (Kirubarajan 
et al., 2000; Li and Zhang, 2000; Lee et al., 2004). 
Unfortunately, each category deals with different problems. 
Basic IE schemes need to additional effort for the 
estimation and detection of acceleration, and the com- 
penation of estimated state. MM methods usually suffer 
from large computational load imposed by using multiple 
sub-filters (Lee et al., 2004).  

Furthermore, many suggested schemes were developed 
based on different assumptions about the target dynamics 
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and available facilities. For example, some researchers 
developed their algorithms with constant velocity or con- 
stant acceleration assumption (Wang and Varshney, 1993; 
Munu et al., 1992; Blair, 1993; Mook and Shyu, 1992). 
Some other methods need to use small sampling times 
(duration between two scans) to operate accurately (Munu 
et al., 1992; Blair et al., 1991; Mook and Shyu, 1992; 
Rokhsaz and Steck, 1991). 
Among IE techniques, the MIE approach yields reason- 
able performance without constant acceleration or small 
sampling time assumptions. Furthermore, it not only pro- 
vides fast initial convergence rate, but it can also track a 
maneuvering target with fairly good accuracy. In this 
approach, the acceleration is treated as an additive input 
term in the corresponding state equation. This modeling 
method has provided a special augmentation in the state 
space model which considers both the state vector and an 
unknown acceleration vector as a new augmented state 
(Khaloozadeh and Karsaz, 2009). Although the MIE yields 
fairly good accuracy in tracking non-maneuvering or mild 
maneuvering targets, its steps get smaller after some 
iterations. Small steps lead to a delay in tracking when the 
target stars to maneuver, especially, when the magnitude 
of maneuver is high.  



 

 

  

 
 
 
 

To overcome the above-mentioned problem, self-tuning 
approaches with variable forgetting factor can be employ- 
ed. A well-known self-tuning method has been proposed 
by Fortescue et al. (1981). This method was applied to 
many applications and the results were very encouraging 
(Osorio Cordero and Mayne, 1981). In this scheme, the 
value of the forgetting factor in each iteration is very 
important. Obviously, this parameter should be determined 
based on the magnitude of acceleration. The main 
drawback of applying method of Fortescue et al. (1981) to 
target tracking problem is that the target acceleration plays 
no role in self-tuning mechanism of this method. To cope 
with this trouble, Bahari et al. (2007, 2008) proposed a soft 
computing approach to determine this parameter 
adaptively.  

This method used a fuzzy target maneuver detector in 
order to decide about resetting the covariance matrix. 
Although this method was attractive from several aspects, 
it did not succeed in increasing the tracking accuracy 
considerably. This deficiency was due to the weakness of 
its maneuver detector system. Beheshtipour and 
Khaloozadeh (2008) have tried to solve this problem by 
utilizing the MIE method instead of the standard Kalman 
filter. Therefore, in this method the need for a separated 
maneuver detector system was overcome (Khaloozadeh 
and Karsaz, 2009). They also used a fuzzy system to reset 
the covariance matrix intelligently. However, the designed 
fuzzy system was not properly setup.  

Furthermore, the criterion of resetting the covariance 
matrix was erroneous. Moreover, they did not follow the 
instruction of self-tuning methods correctly. In this paper, 
we introduce a new fuzzy self-tuning method for the MIE in 
order to track maneuvering targets with high accuracy. The 
proposed method can determine the optimal values of 
forgetting factor in each iteration effectively with the use of 
fuzzy logic.    

The rest of the paper is organized as follows. The pro- 
blem formulation is derived in Section 2. In the following 
section, the MIE method is presented. The proposed 
method is introduced in Section 4. Section 5 includes three 
examples of targets moving with high maneuver in a 
two-dimensional plane in order to visualize the efficiency of 
the proposed method in comparison with those of the MIE. 
The paper ends with Section 6 on conclusions. 
 
 
STATEMENT OF THE PROBLEM 
 
It is assumed that the target moves in a two-dimensional 
plane. The state equation for the non-maneuvering model  
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is given by (1). 
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Where; 
n : Discrete time index. 

(.)x : State vector. 

)(nu : is the target acceleration which is modeled as an 
unknown variable. 

(.)w

 

: White system driving uncertainty. 

)0(X : Initial condition which may be uncertain. 

(.)z : Observation vector. 

(.)v  : White observation uncertainty. 
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Where; (.)R , (.)Q  and ψ  denote the measurement, 
process and initial state covariance matrices, respectively. 
The expression for )(nG , )(nF , )(nC  and )(nH as 
functions of the update time T (T is the time interval 
between two consecutive measurements) are: 
 

T

H

T

T

T

T

T

T

T

T

G
T

T

F

�
�
�
�

�

�

�
�
�
�

�

	

=

�
�
�
�
�

�

�

�
�
�
�
�

�

	

=

�
�
�
�
�

�

�

�
�
�
�
�

�

	

=

�
�
�
�

�

�

�
�
�
�

�

	

=

00
10

00
01

 ,

0
2/0

0
02/

 C ,

0
2/0

0
02/

  , 

1000
100

0010
001

2

2

2

2

  

 
 
THE MIE  
 
Modified input estimation (MIE) technique  was proposed 
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by Khaloozadeh and Karsaz recently (2009). In this 
method the acceleration is treated as an additive input term 
in the corresponding state equation. The formulation of this 
method is as follows. 
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Therefore, the augmented state equations can be derived 
as relation 3. 
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Where; )(nxAug , AugF , AugG , AugW , AugH , )(V nAug  

are as follows.  
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The optimal target maneuver estimator for the augmented 
system is: 
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In this method Kalman gain is: 
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The new covariance matrix of  the  augmented  process  

 
 
 
 
noise )n(WAug , measurement noise )(nVAug , and 

cross-covariance between them )(nTAug  
are as follows: 
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FUZZY SELF-TUNING 
 

In the MIE, the error covariance matrix ( )|( nnPAug ) 

becomes small after a few iterations. Hence, their steps 
become small (Beheshtipour and Khaloozadeh, 2008). 
Consequently, when the target begins to maneuver with 
high acceleration, the MIE tracker would not be functional- 
ly accurate. This motivates a related scheme in which we 
reset )|( nnPAug  at various times. In other words, old 

data is discarded to keep the algorithm alive.  
 
 
CONVENTIONAL FORGETTING FACTOR 
 
One of the most successful self-tuning methods was 
proposed by Fortescue et al. (1981). In this method, the 
trace norm was used as a matrix measure. Fortescue and 
his colleagues explained that, after some iterations the 

error covariance matrix norm ( [ ])1|1( ++ nnPTrace Aug ) 

becomes smaller than a specified value (TL). In this 
situation, in order to tune the regulator the following 
resetting action should be performed. 
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Where, )1( +nλ  is the forgetting  factor. It  is  roughly



Bahari and Pariz          939 
 
 
 

Last State Measurement 

MIE 
Fuzzy 

Forgetting 

Factor 

Determiner 

ux uy 

x 

y 
vx 

Block 2 

Block 1 

Block 4 

vy 

2-Norm 

Trace 
AugP  

2
)(nu

 
Self-Tuning Centre

 λ
1

 

Block 3 

Block 5 
New

AugP  

 
 
Figure 1. Block diagram of the proposed method. 

 
 
 
equal to 1 under steady state condition and suddenly 
decreases when quick changes to the process arise. 
However, in computing )1( +nλ , there is a parameter 

called δ which should be determined off-line.  
The main drawbacks of the conventional self-tuning 

methodology are: 
 
1. The TL is determined off-line and remains constant 
during the simulation. This drawback may lead to a delay in 
tuning the filter when the target maneuvers. Further- more, 
it can result in surplus resetting when the target does not 
maneuver.   
2. The δ  is determined off-line and remains constant 
during the simulation. This drawback may result in a small 
Kalman gain when the target maneuvers (incomplete 
compensation) or a large Kalman gain when the target 
does not maneuver. 
 
 
FUZZY FORGETTING FACTOR  
 
To overcome the drawbacks of the self-tuning approach 
proposed by Fortescue et al. (1981) a fuzzy self-tuning 
algorithm is suggested in this paper. In this method 

)1(
1
+nλ

is determined intelligently based on the target 

acceleration.  
A block diagram of the proposed intelligent method is 

illustrated in Figure 1.  

In this Figure, Block 1 is the MIE. Inputs of this block are 
last state, measurement and the updated error covariance 
matrix obtained using fuzzy logic, ( )11( ++ nnP New

Aug ). The 

procedure for calculating )11( ++ nnP New
Aug  will be 

elaborated. This block has two outputs. One of them is the 
new state and the other is the error covariance matrix 
before updating procedure ( )11( ++ nnPAug ). 

Block 2 computes the 2-norm of vector 

[ ]Tyx nununu )()()( = . The output of this block is 

22
2

)()()( nununu yx += .  

Block 3 computes the Trace norm of )11( ++ nnPAug . 

Block 4 is the fuzzy forgetting factor determiner. As can 
be interpreted from Figure 1, Block 4 has two inputs and 
one output. Inputs are the target acceleration magnitude 

(output of Block 2) and [ ])1|1( ++ nnPTrace Aug  

(output of Block 3). The output of this fuzzy controller is the  

optimum value of 
)1(

1
+nλ

 in each iteration. Obviously, 

error covariance matrix should be reset when the target 
starts to maneuver and tracker steps are not large 

enough( [ ])1|1( ++ nnPTrace Aug  is small) to track the 

target.  In such a situation, the fuzzy system in  Block  4  
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determines a proper value for
)1(

1
+nλ

, which is propor- 

tional to the target acceleration. While the target does not 

maneuver or 
)1(

1
+nλ

 is large enough to track the target 

accurately, the output of Block 4 approaches 1. Therefore, 
the rules of designed fuzzy system are as follows: 
 

Rule 1: If [ ])1|1( ++ nnPTrace Aug  is high or 
2

)(nu  

is low then 
)1(

1
+nλ  

is low 

 

Rule 2: If [ ])1|1( ++ nnPTrace Aug  is low and 
2

)(nu  

is high then 
)1(

1
+nλ  

is high 

 
Inputs and output fuzzy sets all have two Gaussian 
membership functions with the following membership 
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Where; j
ic  and iσ  are the mean and the standard 

deviation of Gaussian membership function for the ith input 
variable of the j th fuzzy rule, respectively. The fuzzy 
inference rules support afore-mentioned information. 

Block 5 is the self-tuning centre. Inputs of this block are 

)1(
1
+nλ

 and )11( ++ nnPAug . The system tunes itself 

in this block using the following relation.  
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The output of this block is the updated error covariance 
matrix obtained using fuzzy logic ( )11( ++ nnP New

Aug ).  

As can be interpreted from the procedure of applying the 
FFF to the MIE, FFF increases the steps of MIE in maneu- 

 
 
 
 
vering mode effectively and do not change the steps of MIE 
in non-maneuvering mode. Consequently, the esti- mation 
accuracy of MIE associated with FFF is significantly higher 
than a simple MIE. 
 
 
SIMULATION RESULTS 
 
This section demonstrates the improvement of state 
estimation achieved by the proposed method. To evaluate 
the new tracking scheme and compare it with the MIE 
(Khaloozadeh and Karsaz, 2009) three examples are 
considered.  

In all simulations of this section the elements of the 
covariance matrices of system noise and measurement 

noise are selected as �
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, respectively.  

Furthermore, the initial position and speed of the target are 
unknown for the trackers. 

 
Example 1: In this case study, our intention is to evaluate 
the proposed method in high maneuvering target situation.  

In this simulation the sampling time is )(1 sT = . The 
initial position of the target is given by 

)](0),(200[)]0(),0([ mmyx =  with an initial speed of 

)](0),(18[)]0(),0([ 11 −−= msmsvv yx . The target moves 

with constant acceleration of 
)](ms 5.0),-0.5(ms[)]0(),0([ -2-2 −=yx uu  until 

)(100 st = . Then, it starts to maneuver with acceleration 

of )](ms10),(ms2[)]101(),101([ -2-2=yx uu . This 

acceleration continues to )(400 st = . Then, the target 
starts another maneuver with acceleration of 

)](ms 30),(ms 10[)]401(),401([ -2-2 −−=yx uu . The 

target moves with this acceleration up to the end of this 
simulation at )(500 st = .  

Figures 2 and 3 show the actual values and estimations 
of target range and azimuth, and also their corresponding 
errors by the proposed method and the MIE, respectively. 
Figure 4 illustrates the target velocity estimation by two 
methods. Figure 5 indicates the errors of velocity estima- 
tion in X and Y directions. The accuracy of the  proposed 
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Figure 2. The actual value and estimation of the target range and the corresponding errors by the 
proposed method and MIE in Example 1. 
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Figure 3. The actual value and estimation of the target azimuth and the corresponding errors by 
the proposed method and conventional MIE in Example 1. 
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Figure 4. Target speed and the estimation result of the proposed method and MIE 
technique in Example 1. 

 
 
 
algorithm in comparison with the MIE can be interpreted 
from these figures.  
 
Example 2: In this example, our intention is to evaluate 
the proposed method in countering a target with low, 
medium and high maneuvers. Therefore, three simulations 
are performed as follows. In these simulations, the sam- 
pling time is )(10 sT =  and the initial position, velocity 
and acceleration of the target are given by 

)](0),(200[)]0(),0([ mmyx = , 

)](0),(18[)]0(),0([ 11 −−= msmsvv yx , and 

)](ms 0),0(ms[)]0(),0([ -2-2=yx uu , respectively. 

Case 1: Simulation of low maneuvering target. The 
target moves with its initial acceleration until t= 150 s, 
Then, it maneuvers with acceleration of 

)](ms 2.0),0.2(ms[)]151(),151([ -2-2=yx uu   up to the 

end of this simulation at )(300 st = .  
Case 2: Simulation of medium maneuvering target. The 

target moves with its initial acceleration until  t =  150  s.  

Then, it maneuvers with acceleration of 
)](ms 2),2(ms[)]151(),151([ -2-2=yx uu   up to the end 

of this simulation at t =30 s. 
Case 3: Simulation of high maneuvering target. The 

target moves with its initial acceleration until t = 150 s. 
Then, it maneuvers with acceleration of 

)](ms 20),20(ms[)]151(),151([ -2-2=yx uu   up to the 

end of this simulation at t = 130 s.  
 Each of three simulations was repeated 100 times and 
root mean square errors (RMSE) of estimation were 
computed based on the Monte-Carlo method (Chen and 
Liu, 2000; Doucet et al., 2001).  

Table 1 provides the estimation results of the two 
methods in estimating different target parameters. 
 
Example 3: Many tracking algorithms are very sensitive to 
the sampling times or T (Munu et al., 1992; Blair et al., 
1991; Mook and Shyu, 1992; Rokhsaz and Steck, 1991). 
In this example, our intention is to assess the proposed 
method in the case of sensors with a wide range of 
sampling times. The following stimulation  was  repeated  
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Figure 5. Errors of target velocity estimation in X and Y directions by the proposed method and 
MIE in Example 1. 

 
 
 

Table 1. Estimation error in simulations of low, medium and high maneuvering target cases (RMSE). 
 

RMSE  
Simulation Parameter 

MIE Propose method 
Improvement 

percentage (%) 
X-position (m) 1432 1420 0.83 
Y-position (m) 1306 1296 0.76 
X-velocity (m/s) 103 81 21 
Y-velocity (m/s) 94 74 21 
Acceleration (m/ s2) 31 14 55 
Range 1816 1827 -0.6 

Low maneuvering 
target case 

Azimuth 45 41 9 
X-position (m) 1447 1431 1 
Y-position (m) 1595 1582 0.8 
X-velocity (m/s) 105 82 21 
Y-velocity (m/s) 115 90.5 21 
Acceleration (m/ s2) 33 16 51 
Range 2000 2000 0 

Medium maneuvering 
target case 

Azimuth 40 37 7.5 
X-position (m) 1811 1670 7.7 
Y-position (m) 1548 1399 9.62 
X-velocity (m/s) 139 94 32 
Y-velocity (m/s) 120 79 34 
Acceleration (m/ s2) 35 16 54 
Range 2177 2029 6.79 

High maneuvering 
target case 

Azimuth 42 39 7 
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Table 2. Tracking result in example 3 (RMSE). 
 

RMSE 
Parameter 

MIE Proposed method 
Improvement percentage (%) 

X-position (m) 814 360 55.77 
Y-position (m) 815 346 57.54 
velocity (m/s) 96 50 47.91 
Range 1039 396 61.88 
Azimuth 7.77 7.22 7 
Course 18 14 22.22 

 
 
 
with different sampling times. To be more precise, we 
increased the sampling time from T = 0.1 to 10 s to with 
step 0.1 s in the following simulation. Therefore this 
simulation was repeated 150 times.  

In this simulation, the initial position of the target is given 
by )](0),(200[)]0(),0([ mmyx =  with an initial speed of 

)](0),(18[)]0(),0([ 11 −−= msmsvv yx . The target moves 

with constant acceleration of 
)](ms 2),2(ms[)]0(),0([ -2-2=yx uu  until time step 250. 

Then, it starts to maneuver with acceleration of
 

)](ms 10),(ms10-[)]251(),251([ -2-2 −=yx uu . The 

target moves with this acceleration up to the end of this 
simulation at time step 500.  

Table 2 shows the mean values of RMSE in estimation 
over the 150 runs.  
 
 
CONCLUSIONS 
 

In this paper, a fuzzy forgetting factor has been applied to 
the MIE technique in order to increase its accuracy in 
tracking high maneuvering targets. Although the simple 
MIE technique –without forgetting factor– works well in 
non-maneuvering or low maneuvering target cases, its 
steps get small after a few iterations. Small steps result in 
low performance when the target moves with a high 
acceleration. To over this problem, fuzzy forgetting factor 
has been suggested in this paper.  

The proposed intelligent self-tuning approach provides 
an algorithm for determining optimal values of the 
forgetting factor based on the target acceleration in each 
iteration. For further researches, one can try to find the 
optimal parameters of fuzzy systems used in this research 
utilizing different optimization techniques such as Genetic 
Algorithm (GA). Simulation results in different case studies 
emphasize the accuracy of new intelligent scheme in 
tracking a high maneuvering target in comparison with the 
MIE technique.  
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