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Variety and diversity of population are essential for convergence to global optimal in genetic algorithm. 
In this study, the concepts of fitness distribution, expected and cumulative fitness distribution, 
reproduction rate and loss of diversity are defined for a sexual selection mechanism, and their 
performance of this type of selection mechanism is studied theoretically. Then a genetic algorithm 
based on this selection mechanism and penalty function are utilized for solving multidimensional 0/1 
knapsack problems. Computational experiments are conducted on the proposed technique compared 
with some commonly used selection mechanisms for solving multidimensional 0/1 knapsack problems 
from the literature. 
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INTRODUCTION 
  
In the biological evolution that Darwin (1888) introduced, 
natural selection is a process consisting of three 
ingredient principle: variation, heredity and chromosome 
selection. There is an unsettled question in evolutionary 
biology (Judson and Normak, 1996), “What selective 
forces maintain sexual reproduction and genetic 
recombination in nature”? (Smith, 1987). 

In many kinds of natural selection, males are chosen by 
females in order to mate and create offspring, thus males 
have to contest with each other in order to be selected as 
mates. Female choice for male is an extensively 
approved method by which females take advantage of 
their reproductive success in offspring quality. 

The first research to provide a possible solution to the 
problem of selection for maladaptive behaviors is 
introduced by Fisher (1958). He proposed that if a gene 
for a convinced trait becomes genetically connect to the 
preference for it, then the trait will become more common 
to match the female‟s preference for it, giving a reason to 
maladaptive behaviors becoming common in males. 
Kirkpatrick (1982) developed an analytic model of sexual 
selection.   In    the    sexual   selection   that    Kirkpatrick 
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considered, the male of the species donate only gametes 
to the next generation, hence the trait and preference loci 
are not sex-linked and dwell on different chromosomes 
and the genetic system is single. There is a strong 
confirmation that the specialization of chromosomes is 
principally by gender bunch (Kimura, 2000). 

The division of the population into multiple preference 
categories is another attractive result. The female‟s 
preference for different traits could split the males so that 
each group would „specialize‟ in meeting the preference 
for one trait at the expense of meeting preferences for 
another (Todd and Miller, 1991). 

Genetic algorithm (GA) is a search optimization 
technique that mimics some of the processes of natural 
selection and evolution (Holland, 1975). Since GA is 
extracted from natural evolution, then gender is one of 
the most crucial elements in the GAs. 

Gender of GA can be categorized into two well known 
components; the standard GA (Goldberg, 1989; Holland, 
1975) and the theory of sexual selection (Allenson, 1992; 
Freeman and Herron, 2001; Lis and Eiben, 1997; Rejeb 
and AbuElhaija, 2000; Stearns and Hoekstra, 2001; 
Vrajitoru, 2002). These simulations consist of adding an 
extra attribute of gender to the chromosome, and a 
constraint avert for crossover between the same sex 
chromosomes are considered. 



 
 
 
 
Jalali and Lee (2012a) introduced a new sexual selection. 
In their technique, the population is divided into two 
groups of males and females.  

Raghuwanshi and Kakde (2006) studied a GA with 
species and sexual selection beads using the real coding. 
Their approach views every female chromosome as 
niche in population and formation lays its foundations on 
the Euclidean distance between the male and female 
chromosomes. 

Sanchez-Velazco and Bullinaria (2003) presented a 
gendered GA simulation model inspired by sexual 
selection and gender separation in which crossover only 
occurs between opposite-sex chromosome and the 
evaluation, selection, and mutation strategies of the GA 
are functions of gender, and thus a scheme of intra-
gender competition and cross-gender cooperation 
evolved. During the sexual selection, the female 
chromosome is selected by the tournament selection 
while the male chromosome is selected based on the 
hamming distance from the selected female 
chromosome, fitness value or active genes. In another 
study conducted by Jalali and Lee (2012b) a fuzzy 
genetic algorithm based on this technique for selection 
mechanism was suggested. They used some nonlinear 
numerical functions and by considering the results from 
each test function, they showed that the proposed 
technique of grouping the male and female chromosomes 
alternately outperforms other grouping techniques of 
sexual selection mechanisms.  

In this study, the sexual selection mechanism which 
was presented by Jalali and Lee (2012a) is considered 
and theoretically the concepts of fitness distribution, 
expected and cumulative fitness distribution, reproduction 
rate and loss of diversity are surveyed for this selection 
mechanism. Then a GA based on this selection 
mechanism and penalty function are utilized for solving 
multidimensional 0/1 knapsack problems. 

The rest of the paper is organized as follows. 
Subsequently, a theoretical analysis of the sexual 
selection in GA is given. A GA based on sexual selection 
and penalty function for solving multidimensional 
knapsack problem (MKP) is then proposed. Thereafter, 
the results of computations of the benchmark deflates 
from the literature are presented. Finally, a brief 
conclusion is given. 
 
 

SEXUAL SELECTION 
 

In a classical GA, chromosomes reproduce asexually: 
any two chromosomes may be parents in crossover. 
Gender division and sexual selection here inspire a 
model of gendered GA in which crossover takes place 
only between chromosomes of opposite sex.  

Let },...,,{ 21 NCCCP   is the population at generation ; 

the function RCf ii : is called fitness value for 

chromosome iC .One of  the  most  important  parameters  
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of quality of chromosome measured is fitness value. 

 

Hamming distance: If },...,,{ 21 imiii cccC  and 

},...,,{ 21 jmjjj cccC   are two chromosomes of 

population P, the hamming distance between 

iC and jC is: 
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where 0),( kjik ccd   if jkik cc     and    1),( kjik ccd   

otherwise. 

 
Active gene: The active gene that is denoted by 

)( iCAct is number of none zero genes in 

chromosome iC  (Jalali and Lee, 2012a). For example, 

let )0,0,1,0,0,0,1,1,0,1,0,1,0,0,1(iC  is a chromosome, 

then 6)( iCAct . 

 
Tournament selection size t is a technique for selecting 
chromosomes in GA which works as follows: at first, t 
chromosomes are selected randomly from the population 
and then the best chromosome from this group is copied 
into the intermediate population. 

Inspired by the non-genetic sex-determination system 
existed in some species of reptiles, including alligators 
and some turtles where sex is determined by the 
temperature at which the egg is incubated, the population 
is divided into two groups, male (50% of the population) 
and female (50% of the population), so that the male and 
female can be selected in an alternate way. In each 
generation, the layout of selection of male and female are 
different. In this research, a relation between the fitness 
value, hamming distance and active gene as in biological 
systems affecting the selection procedure is proposed. 

During the sexual selection, the female chromosome is 
selected by tournament selection size t from female 
category. This chromosome is called female-sex. The 
male chromosome is selected as follows: choose some 
number t of chromosomes randomly from the male 
category and then the hamming distance between these 
chromosomes and female-sex chromosome are 
calculated. The chromosome with maximum hamming 
distance is selected for crossover with female-sex. This 
chromosome is called male-sex. When hamming 
distances are calculated, maybe some chromosomes 
have the same hamming distance and this number is the 
maximum hamming distance. In this condition, the fitness 
value of these chromosomes is considered and the best 
chromosome is selected. If the best fitness value belongs 
to more than one chromosome, a third parameter „active 
gene‟ is considered and the chromosome with the highest  
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active gene is considered for male-sex. Otherwise one of 
them is selected randomly for male-sex (Jalali and Lee, 
2012a). 

The rest of this chapter is analyses of fitness 
distribution, reproduction rate and loss of diversity for this 
sexual selection. In this study, we use some definitions 
and theorems that were considered by Blickle and Thiele 
(1995) for the survey of performance sexual selection 
mechanism in GA.  
 
Fitness distribution: The function  0: ZRs  allots to 

each fitness value Rf   the number of chromosomes in 

a population P bearing this fitness value. s is called the 
fitness distribution of a population P (Blickle and Thiele, 
1995). 

 

Expected fitness distribution: 
*s denotes the expected 

fitness distribution after applying the selection method to 
the fitness distribution s (Blickle and Thiele, 1995). 

 
Cumulative fitness distribution: let n be the number of 

unique fitness value and )(...21 Nnfff n  the 

ordering of the fitness values. )( ifS denotes the number 

of chromosomes with fitness value if  or worse and is 

called cumulative fitness distribution (Blickle and Thiele, 
1995). 
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Reproduction rate: The reproduction rate )( fR denotes 

the ratio of the number of chromosomes with a certain 

fitness value f after and before selection. 
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where 
*s denotes the expected fitness distribution after 

applying the selection method to fitness distribution s 
(Blickle and Thiele, 1995). 
 

Loss of diversity: The loss of diversity dL  is the ratio of 

chromosomes of a population that is not selected during 
the selection phase. 
 

Theorem  1:  If  the  reproduction  rate  )( fR   increases 

 
 
 
 

monotonously in f , the loss of diversity of a selection 

method is: 
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where zf denotes the fitness value such that  

1)( zfR (Blickle and Thiele, 1995).  

 
Theorem 2: The expected fitness distribution after 
performing sexual selection on the distribution s is: 
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where iF is analogue fitness value of male chromosome 

iC  with the best  hamming distance from female-sex. 

 

Proof: If 2/1 Ni   tournament selection is used for 

female chromosomes. Suppose )(*

ifS  is number of 

chromosomes with fitness if  or worse after applying 

selection method. The probability for selecting a 

chromosome with fitness value or worse is 








N

fS i )(
2  and 

since tournament is repeated for 2/N  

then
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fitness distribution )()()( 1 iii fsfsfS  then for 

expected fitness value is: 
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Let NiN 2/ , if iF  is considered like fitness value 

for chromosomes in tournament we obtain: 

 
t

it

t

it

i
N

HDS
N

N

HDS
Nfs 

















  )(

2
)(

2)( 1*                   (7) 

 
Theorem 3: The reproduction rate of sexual selection is: 
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Proof: This is obtained by reproduction rate and 
Equation (6): 
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Theorem 4: The loss of diversity of sexual selection is: 
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where zf denotes the fitness value such that  

1)( zfR and zF is analogue fitness value of male 

chromosome iC  with the best  hamming distance from 

female_sex such that 1)( zFR . 

 

Proof:   Suppose 2/1 Ni   
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For NiN 2/ , the proof follows the same pattern. 

 
 
GENETIC ALGORITHM FOR MULTIDIMENSIONAL 
KNAPSACK PROBLEM 
 
The Multidimensional Knapsack Problem (MKP) is a 
general statement of any 0-1 integer problem with 
nonnegative coefficients. It is formulated as follows: 
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njx j ,...,1}1,0{   

 

0,0,0  iijj cwpwith  

 
Where n is the number of objects and m is the number of 

knapsacks, ijw  is the consumption of resource i  for 

object j , ic is the capacity of ith knapsack, jp is the profit 

associated with object j, and jx is the decision variable 

with object j (Djannaty and Doostar, 2008). 
Genetic algorithms maintain a population of solution 

and use selective breeding and recombination strategies 
to generate better and better solution. As applied to the 
MKP, most GAs are based on the some heuristic 
approaches. These approaches are used to generate an 
initial population of solution, and then genetic operators 
such as crossover and mutation are applied to construct 
new, hopefully improved, solutions. 

Chu and Beasley (1998) presented a GA approach 
which to date seems to be one of the best heuristics yet 
found for the MKP. In their technique, an n-bit binary 
string was used as the representation of solutions to the 
MKP and a repair operator was used to transform 
infeasible solutions to feasible solutions.  

The performance of this approach was not as good as 
that of Chu and Beasley (1998). For controlling infeasible 
solution, Khuri et al. (1994) utilized a fitness function that 
uses a graded penalty term to penalize infeasible 
chromosomes. Their implementation allowed infeasibly 
bred strings to participate in the search since they do 
contribute information. Some researchers showed GAs 
are suitable for solving large knapsack problems (Chu, 
1997; Chu and Beasley, 1997; Hinterding, 1994; Khuri et 
al., 1994; Olsen, 1994; Rudolph and Sprave, 1996; Thiel 
and Voss, 1994). 

Hoff et al. (1996) showed how a proper selection of 
parameters and search mechanisms lead to an 
implementation of GA that yields high quality solutions for 
MKP. Simões and Costa (2001) presented an empirical 
study that compares the performances of the 
transposition based GA and the classical GA solving the 
0/1 knapsack problem and they claimed transposition is 
always superior to crossover. 

Djannaty and Doostar (2008) considered a hybrid of 
GA and Dantzig algorithm based on a strong initial 
population was created to solve single knapsack 
problems. They used some penalty functions for control 
infeasibility solution. An improved GA for the MKP is 
introduced by Raidl (1998). In this method, a bit string 
based GA for the MKP has been improved by introducing 
a pre-optimized initial population, a repair, and a local 
improvement operator. Neoh et al. (2010) presented a 
layered encoding structure and they used a hybrid GA 
and partial swarm optimization for 0/1 knapsack 
problems.  Genetic  algorithm  must   be modified to solve 
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problems. Our modified GA for the MKP is as follows. 
 
 
Encoding and fitness function 
 
Binary encoding is used and the values of all variables 

jx are sorted in a bit string of length n , that 

means
n

jx }1,0{ . However, this representation is direct 

and easy but a string might represent an infeasible 
solution and this infeasible solution needs to be 
considered. One way to do this is by discarding infeasible 
strings and ignoring infeasible regions of the search 
space. Another technique is the employment of penalty 
functions combined into the objective function (Goldberg, 
1989; Michalewicz, 1992; Richardson et al., 1989).  

Since penalty function and its coefficients is effective 
on premature convergence and infeasible final solution, 
then selection of penalty function is not easy. Some 
penalty functions which has been used in GA for uni-
dimensional knapsack problem was compared by Olsen 
(1994). Khuri et al. (1994) utilized a simple fitness 
function that used a penalty function to penalize 
infeasibly bred strings for some standard test problems.  

Rudolph and Sprave (1996) presented a GA for MKP 
such that neighboring method was utilized for parent 
selection and infeasible solutions were penalized as that 
of Khuri et al. (1994). Thiel and Voss (1994) used a 
hybrid of GA and Tabu Search with local search 
operators for controlling infeasible solutions.  

In this research, the following fitness function is used: 
 

}max{.),...,,(
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21 jj
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  (11)                             
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(Khuri et al., 1994). 

 
 

Selection 
 

Selection is an important parameter in GA, which directs 
the GA to the solution by preferring chromosomes with 
high fitness over low-fitted ones. In other word, selection 
is the result of competition process between 
chromosomes to determine which chromosomes are 
used to form new ones. Selection is obtained by 
preferring fitter chromosomes to make sure that good 
properties are carried forward to the next generation. 

Various selection schemes are utilized in GA namely: 
roulette-wheel, tournament selection, stochastic universal 
sampling, sigma scaling, Boltzmann selection, ranking 
selection, steady state selection, elitism selection, local 
selection, group selection, subset selection, action 
selection,   truncation    selection,    multilevel    selection,  

 
 
 
 
directional selection, stabilizing selection, disruptive 
selection, clonal selection and sexual selection.  

In this paper, sexual selection (SXS) which is 
considered and this method is compared with Roulette-
wheel (RW), tournament selection (TS), Stochastic 
universal sampling (SUS), linear ranking selection (LR), 
Truncation selection (TRS) 
 
 
Crossover 
 
Chu and Beasley (1996, 1997) showed overall 
performance of GAs that are selected for MKP is 
frequently proportionately insensitive to the special select 
of crossover operator. In this study, the uniform crossover 
operator is considered as the default crossover operator. 

Uniform crossover operator by exchanging genes 
between two chromosomes based on a set of positions 
defined by a mask in which both the number of positions 
to be exchanged and the positions themselves are 
randomly determined (Chou et al., 2001). Syswerda 
(1989) compared uniform crossover to traditional one-
point and two-point crossover by several means including 
comparing the performance of each crossover method on 
several optimization problems.  

Chou et al. (2001) claimed uniform crossover, used 

with cp (probability of crossover) of 1.0 to be the best 

performing crossover method in terms of solution quality. 
Dengiz et al. (1997) used a specialized form of uniform 
crossover with repair to make sure each offspring was 
feasible according to their implementation. Eshelman and 
Schaffer (1991) noted that uniform crossover was much 
less likely than one-point or two-point crossover to 
produce the same offspring from the same parent. 
 
 
Mutation 

 
Mutation is one of the important parameters in GA. 
Usually, mutation is used after a crossover in GA. If 
chromosomes in the GA are the same in the generation, 
after crossover the offspring will be the same parent and 
GA will be converge to local optimum. The mutation 
operator is used for keeping diversity in the population of 
chromosomes and avoiding premature convergence. 
There are some methods for mutation, however in this 
study binary encoding was used.  A binary mutation 
procedure is performed to mutate some randomly 
selected bits in the chromosome, that is, it causes these 
chosen bits to change from 0 to 1 or vice versa. 
 
 
COMPUTATIONAL EXPERIMENT 

 
Experiment design 
 

The experimental  runs  reported here  are performed  by   using   a 
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Table 1. Comparison error and time (second) for selection methods with 100n  variables, m = 5, 10, 30, constraints and tightness ratios 
α = 0.25, 0.50, 0.75. 
 

m n Ratio Benchmark E./T. SXT RW TS LR SUS TRS 

5 100 

0.25 24197.20 
Error 1.27 2.68 1.42 2.48 2.11 2.41 

Time 8.31 6.21 7.25 11.17 12.10 10.17 
         

0.50 43252.90 
Error 1.13 2.40 1.38 2.31 2.10 2.30 

Time 8.05 6.05 7.12 10.98 11.13 10.01 
         

0.75 60471.00 
Error 1.48 2.33 1.25 1.98 1.90 2.11 

Time 7.83 5.98 6.95 10.31 11.01 9.87 
           

10 100 

0.25 22601.90 
Error 1.15 2.77 1.53 2.33 2.25  2.69 

Time 9.12 7.31 8.17 12.14 12.48 11.35 
         

0.50 45659.10 
Error 1.53 2.18 1.4 7 2.12 2.08 2.53 

Time 8.35 6.85 7.11 11.21 12.32 10.72 
         

0.75 59555.60 
Error 1.39 2.10 1.36 2.08 1.98 2.27 

Time 8.21 6.45 7.05 11.19 11.31 10.41 
           

30 100 

0.25 21654.60 
Error 1.52 2.88 1.89 2.74 2.44 2.93 

Time 16.51 14.36 15.53 18.96 18.04 18.19 
         

0.50 41431.30 
Error 1.47 2.78 1.63 2.65 2.37 2.62 

Time 15.93 13.73 14.81 18.03 18.16 17.81 
         

0.75 59199.10 
Error 1.35 2.22 1.45 2.15 2.03 2.44 

Time 15.61 13.40 15.42 17.52 17.65 17.80 
 
 
 

genetic algorithm with a population size of 50, a mutation rate 

𝑝𝑚 = 1
𝐿  where L  is length of chromosomes, crossover rate 

. Sexual selection (SXS) is considered as the default 

selection operator. This method is compared with Roulette-wheel 
(RW), tournament selection (TS), stochastic universal sampling 
(SUS), linear ranking selection (LR) and truncation selection (TRS). 
Uniform crossover is considered as the default crossover operator. 

A benchmark data set of 270 multidimensional knapsack 
problems (MKPs) was proposed in Chu and Beasley (1990, 1996, 
1998) and was widely used in the literature for the testing of MKP 
algorithms. These problems are available in OR-Library (Beasley, 
1990, 1996; http://mscmga.ms ic.ac.uk/info.html). The problems are 
generated with n = 100, 250, 500 variables, m = 5, 10, 30, 
constraints, and tightness ratios α = 0.25, 0.50, 0.75. This set of 
problems contains 27 different problem sets, each having 10 
randomly generated instances, thus a total of 270 problems. Each 
test problem is tested on the GA for 30 times with a maximum of 

410 generations per each run. All algorithms are coded in C++ and 

run on a Pentium IV with 2.00 GHz CPU and 2.00 GB of RAM. 
 
 

COMPUTATIONAL RESULTS 
 

The benchmark data set tested in this research inclusive 
of 270 problem instances on multidimensional knapsack 
problems proposed by Chu and Beasley (1998). These 
problem instances have been extensively utilized in the 
literature for the testing of MKP algorithms. These 
problems include n = 100, 250, 500 variables and m = 5, 
10, 30  constraints  and  for each category variables three 

tightness ratios are considered as α = 0.25, 0.50, 0.75. 
These set of problems contains 27 different problem sets, 
each having 10 randomly generated instances, thus a 
total of 270 problems. 

In these problem set, ijw  was drawn from discrete 

uniform generator U (0, 1000) and the right hand side 

coefficients },,...,1{, mici   were set using 

 


n

j iji wc
1

  where α is the tightness ratio, and α = 

0.25 for the first ten problems, α = 0.5 for the next ten 
problems, and α = 0.75 for the last ten problems. The 

objective function coefficients },...,1{, njp j  were 

correlated to ijw and are generated 

as j

m

i

ij

j e
m

w
p 500

1
  

  where },...,1{, nje j   is a 

real number drawn from the continuous uniform 
generator U (0,1) (Chu and Beasley, 1998).  

Table 1 reports the comparison results for selection 

methods on the MKPs with 100n  variables, m = 5, 10, 

30, constraints and tightness ratios α = 0.25, 0.50, 0.75 

when the algorithm terminates at
410 generations. 

Benchmark column represent the average results for 
each category of MKPs that were reported (Beasley, 

1990,   1996).  Error    is   calculated   as   ReBError    

http://mscmga.ms/
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Figure 1. Error comparison for m=5 and n=100. 
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Figure 2. Time comparison for m=5 and n=100. 
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Figure 3. Error comparison for m=10 and n=100. 
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Figure 4. Time comparison for m=10 and n=100. 
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Figure 5. Error comparison for m=30 and n=100. 
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Figure 6. Time comparison for m=30 and n=100. 
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Figure 7. Error comparison for m=5, 10, 30 and n=100. 
 
 
 

 

 

 
 

 
 
 
 
 
 
 

1- The horizontal axis in Figures represent: 

Figures 1,3,5,7, 9, 11, 13, 15, 17, 19, 21, 23 :  X  name: Categories  Y name: Error 

Figure 2,4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 :  X  name: Categories  Y name: Time 

 

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9

SXS

RW

TS

LR

SUS

TRS

Categories 

  
T

im
e
 

 

 
 

Figure 8. Time comparison for m=5, 10, 30 and n=100. 
 
 
 
where B  is average of benchmark results and Re is 

average of results that was obtained by algorithms for the 
same category. The row time represent the total time 

(second) used at 
410 generation.   

The horizontal axis in Figures 1 to 6 represent the error 
and time (second) for MKPs, respectively so that m=5, 
10, 30 and n=100. The comparison results for selection 

methods on the MKPs with 100n  variables, m = 5, 10, 

30, constraints and tightness ratios α = 0.25, 0.50, 0.75 
are represented together in Figures 7 and 8.  

Table 2 reports the comparison results for selection 
methods on the MKPs with 250n  variables, m = 5, 10, 

30, constraints and tightness ratios α = 0.25, 0.50, 0.75 

when the algorithm terminates at
410 generations. The 

horizontal axis in Figure 9 until 14 represent the error and 
time  for   MKPs  respectively  so  that  m = 5, 10, 30  and 

n=250.  
Summary of comparison results for selection methods 

on the MKPs with 250n  variables, m = 5, 10, 30, 

constraints and tightness ratios α = 0.25, 0.50, 0.75 are 
represented together in Figures 15 and 16.  

Table 3 reports the comparison results for selection 

methods on the MKPs with 500n  variables, m = 5, 10, 

30, constraints and tightness ratios α = 0.25, 0.50, 0.75 

when the algorithm terminates at
410 generations. The 

horizontal axis in Figures 17 to 22 represent the error and 
time for MKPs, respectively so that m=5, 10, 30 and 
n=250.  

Summary of comparison results for selection methods 

on the MKPs with 500n  variables, m = 5, 10, 30, 

constraints and tightness ratios α = 0.25, 0.50, 0.75 are 
represented  together  in  Figures  23  and  24. As can be 
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Table 2. Comparison error and time (second) for selection methods with 250n  variables, m = 5, 10, 30, constraints and tightness 
ratios α = 0.25, 0.50, 0.75. 
 

m n Ratio Benchmark E./T. SXT RW TS LR SUS TRS 

5 250 

0.25 60409.70 
Error 5.02 7.41 6.17 7.21 6.90 7.95 

Time 14.90 12.70 13.82 17.01 17.15 16.81 
         

0.50 109284.60 
Error 4.83 6.27 5.65 6.42 6.03 7.12 

Time 13.62 11.43 12.53 16.22 16.35 15.56 
         

0.75 151555.90 
Error 4.31 5.60 5.23 5.15 5.12 6.48 

Time 12.23 10.68 11.72 15.23 15.37 14.91 

           

10 250 

0.25 58993.90 
Error 6.21 8.93 7.41 8.50 7.97 8.12 

Time 18.43 16.56 17.45 21.19 21.30 20.62 
         

0.50 108706.40 
Error 5.97 7.45 7.02 7.15 6.63 7.90 

Time 17.52 15.27 16.31 19.63 19.72 19.31 
         

0.75 151330.40 
Error 5.31 7.17 6.50 6.83 5.97 6.53 

Time 16.21 14.96 15.10 19.21 19.42 18.81 

           

30 250 

0.25 56875.90 
Error 8.11 10.35 9.31 9.89 9.15 10.82 

Time 35.83 33.82 34.90 38.17 38.30 37.91 
         

0.50 106673.70 
Error 7.60 9.30 8.54 8.93 8.20 10.15 

Time 34.17 32.01 33.12 37.32 37.50 36.21 
         

0.75 150443.50 
Error 6.12 8.51 7.29 7.77 7.41 9.11 

Time 31.59 29.87 30.91 35.11 35.18 32.53 
 
 
 

Table 3. Comparison error and time (second) for selection methods with 500n  variables, m = 5, 10, 30, constraints and tightness 
ratios α = 0.25, 0.50, 0.75. 
 

m n Ratio Benchmark E./T SXT RW TS LR SUS TRS 

5 500 

0.25 120615.50 
Error 6.30 8.41 7.63 8.05 7.95 9.61 

Time 26.27 24.17 25.12 29.23 30.05 28.21 
         

0.50 219503.10 
Error 5.79 7.96 6.90 7.53 7.05 8.75 

Time 24.61 22.12 23.52 27.18 27.41 26.31 
         

0.75 302354.90 
Error 5.41 7.08 6.58 6.81 6.25 9.23 

Time 22.40 20.43 21.37 25.91 26.05 24.19 

           

10 500 

0.25 118565.50 
Error 7.95 10.12 9.67 9.85 9.41 10.71 

Time 35.32 32.17 33.41 37.12 37.31 36.17 
         

0.50 217274.60 
Error 7.03 9.21 8.95 8.95 8.16 9.65 

Time 32.81 29.89 31.78 34.18 34.29 33.90 
         

0.75 302556.00 
Error 6.45 8.35 8.04 7.96 7.60 8.50 

Time 30.21 28.01 29.15 32.67 33.01 32.15 

           

30 500 

0.25 115473.50 
Error 10.31 12.45 12.60 11.41 11.05 12.15 

Time 67.35 65.14 66.21 70.14 70.31 69.51 
         

0.50 216156.90 
Error 9.95 12.23 11.72 10.96 10.17 11.41 

Time 63.75 61.56 62.63 66.73 66.82 65.72 
         

0.75 302353.40 
Error 8.20 11.01 10.56 10.05 9.45 11.23 

Time 61.24 59.13 60.17 65.04 65.28 63.24 
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Figure 9. Error comparison for m=5 and n=250. 
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Figure 10. Time comparison for m=5 and n=250. 
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Figure 11. Error comparison for m=10 and n=250. 
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Figure 12. Time comparison for m=10 and n=250. 
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Figure 13. Error comparison for m=30 and n=250. 
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Figure 14. Time comparison for m=30 and n=250. 
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Figure 15. Error comparison for m=5, 10, 30 and n=250. 
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Figure 16. Time comparison for m=5, 10, 30 and n=250. 
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Figure 17. Error comparison for m=5 and n=500. 



Varnamkhasti and Vali          2801 
 
 
 

 

 

 
 
 

 
 

 
 
 
 

1- The horizontal axis in Figures represent: 

Figures 1,3,5,7, 9, 11, 13, 15, 17, 19, 21, 23 :  X  name: Categories  Y name: Error 

Figure 2,4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 :  X  name: Categories  Y name: Time 

 

0

5

10

15

20

25

30

35

1 2 3

SXS

RW

TS

LR

SUS

TRS

Categories 

  
  

T
im

e
 

 

 
 

Figure 18. Time comparison for m=5 and n=500. 
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Figure 19. Error comparison for m=10 and n=500. 
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Figure 20. Time comparison for m=10 and n=500. 
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Figure 21. Error comparison for m=30 and n=500. 
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Figure 22. Time comparison for m=30 and n=500. 
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Figure 23. Error comparison for m=5, 10, 30 and n=500. 
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Figure 24. Time comparison for m=5, 10, 30 and n=500. 
 
 
 

seen, it is clear that sexual selection for MKPs has a 
major advantage over other selection methods. 
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