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The complexity of domain problem can slow or even hinder the learning process of neural networks. It 
is rather difficult to overcome such an obstacle because neural networks, as cited today in the 
literature, lack the interpretability of their internal structures. In this paper, we present a visualization 
approach capable of enhancing the understanding of neural networks. Our approach visualizes input 
and weight contributions, sensitivity analysis, and provides guidance in pruning less influential 
features and consequently reducing the complexity of domain problem while maintaining acceptable 
error rates. We conduct experiments on various datasets to show the effectiveness of our approach. 
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INTRODUCTION 
 
The human brain has the ability to perform multi-tasking. 
These tasks include controlling the human body 
temperature, blood pressure, heart rate, breathing, and 
other tasks that enable human beings to see, hear, smell 
and so on. The brain can perform at a rate that is far less 
than the rate at which the conventional computer can 
perform the same tasks (Haykin, 1999). Very little is 
known about how the brain actually works but there are 
computer models that try to simulate the same task that 
the brain carries out. These computer models are called 
Artificial Neural Networks (ANN), and the method by 
which the neural network is trained is called a Learning 
Algorithm, which has the duty of training the network and 
modifying weights in order to obtain a desired response. 

Achieving a near optimal  ANN  for  a  specific  problem 

requires a prior knowledge of the domain problem and an 
intelligent choice of network parameters such as weights, 
size of hidden layers, learning rate, etc. On the other 
hand, the lack of interpretability of the internal 
characteristics of a trained network hinders the 
construction of near optimal ANN (Sjöberg et al., 1995). 
Moreover, when the complexity of domain problem 
increases, reaching desired results becomes more 
difficult and unmanageable. 

Reducing the complexity of domain problem by 
removing less influential features can ease the 
construction of desired ANN. However, as we do not 
have a good understanding of how neural networks work 
it is rather difficult to know which features available are 
the most useful in  describing  the  key  properties  of  the
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input vector class. Besides, manual pruning of domain 
problem is considered a tedious and error-prone task 
(Abraham, 2004). 

Visualization can help understand complex systems 
(Viste and Skartveit, 2004). In this effort, we present a 
visualization approach to help understand input 
contributions and internal structures of multiclass feed 
forward neural networks. Our approach provides the 
necessary guidance, through means of visualization, to 
reduce the complexity of the problem, by pruning less 
important features, while achieving good results with 
acceptable errors. We attempt to visualize the knowledge 
learned by neural network such as input and weight 
contributions, sensitivity analysis. To the best of our 
knowledge, our visualization approach is the first to 
visualize input significance of multiclass output 
classification problems. 
 
 
RELATED WORK 
 
There has been much research devoted to studying 
sensitivity analysis and feature extraction of neural 
networks. Readers are referred to a comprehensive 
review and comparison of methods to study the 
contribution of input variables (Gevrey et al., 2003). 
Garson (1991) and Goh (1995) partition the connection 
weights to determine the relative importance of inputs. 
Milne (1995) proposes a modified version of Garson’s 
method to determine input variable importance. Her 
calculation takes into account that weights can be 
positive or negative, and gives a better measure of 
contribution of inputs to outputs. Numerical sensitivity 
analysis is proposed in Montao and Palmer (2003) to 
interpret the effect of input variables on output without 
making an assumption about the nature of the data. More 
recently, Paliwal and Kumar (2011) propose a method 
based on the interquartile range of the distribution of the 
network weights obtained from training the network. They 
have shown that their method performs better than the 
connection weight approach proposed by Olden and 
Jackson (2002). 

Visualization of the structure and behavior of neural 
networks has witnessed some research attention. Fischer 
and Zell (2000) develop an interactive visualization tool to 
help gain insights into neural network architectures and 
how the learning progresses and knowledge are stored in 
a network. Steeler et al. (2001) describe an interactive 
tool used to examine the weights and topology of neural 
networks. An evolutionary adaptation process is used in 
their tool to allow weights to be adjusted during training. 
They also present a compact matrix representation 
allowing many neural networks to be compared and 
organized in a tree structure. In the work presented by 
Tzeng and Ma (2005), the significance of input units and 
connection weights is mapped to color-coded units and 
edges of  varying  size,  respectively.  Their  work  merely 

 
 
 
 
visualizes one output class classification tasks while in 
our work we deal with multiclass classification tasks. 
Moreover, we visualize input contribution and sensitivity 
analysis in pursuit of better understanding of data 
features and reducing the complexity of the domain 
problem. 
 
 
ARTIFICIAL NEURAL NETWORKS 
 
Feedforward Neural Network (FFNN) model is called a 
multilayer perceptron network that consists of input, 
hidden, and output layers. Let a FFNN with K input units, 
N hidden units, and L output units, where s = (s1, 
s2,…,sK)T, x = (x1, x2,…,xN)T, and y = (y1, y2,…,yL)T, are 
the inputs of the input nodes, the outputs of the hidden 
nodes, and outputs of the output nodes, respectively. A 
three-layer FFNN is shown in Figure 1. In FFNN, all the 
network weights are assigned random values initially, and 
the goal of the training is to find the set of network 
weights that causes the output of the network to match 
the teacher values as closely as possible. 
 
 
Input contribution 
 
As proposed by Garson (Garson, 1991), input 
contribution measures the influence of input towards 
output class. Input that has large contribution carries 
essential features of the data. We adopt a modified 
version of Garson’s which is proposed by (Milne, 1995) 
because it takes into account that weights could be 
negative or positive. Contribution of input i to output l is 
computed as follows: 
 

            (1) 

 
where, in general, wxy represents the weight between unit 
x in layer n and unit y in layer n + 1. 

Input that has a contribution close to zero can be 
excluded from training. A large positive contribution of 
input towards an output favors that output class while a 
large negative value tends to favor other output classes. 
 
 
Weight contribution 
 
The knowledge learned by the neural network is internally 
stored in the network weights. Thus, it is critical to 
measure the positive or negative contribution of those 
weights. For hidden-output weights, we measure the 
contribution by the value of weight they hold when the 
training process is done as follows: 
 

           (2) 
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Figure 1. An example of the topology of a three-layer feedforward neural network. 

 
 
 
In FFNN, the error propagates back between the current 
output and target output in order to modify the weights. 
Therefore, in measuring input-hidden weight contributions 
we propagate the layers influenced by multiplying the 
weights between input-hidden by all hidden-output 
weights connected to them as follows: 
 

          (3) 

 
 
Sensitivity analysis 
 
Sensitivity analysis measures the effect that changes in 
input Ik have on output Ol. The effect indicates the 
significance of input on class output. Sensitivity analysis 
is calculated by taking the partial derivatives of input Ik 

with respect to output Ol (Montao and Palmer, 2003; 
Engelbrecht and Cloete, 1998) as follows: 
 

             (4) 

 
Where yn is a hidden unit activation, wnl is the weight 
between hidden n and output l, and wkn is the weight 
between input unit k and hidden unit n. 

The sensitivity depends on information learned by the 
neural network, which is stored in wnl and wkn, and also 
depends upon the activation of the neurons in the hidden 
and output layers. In Equation 4, different input patterns p 
(input vectors) can provide different values for the change 
of effect. Thus, the sensitivity S is measured by taking the 
maximum effect to output due to a change in input as 
follows: 

                     (5) 

 
where P is the number of input patterns (or input vectors 
in the data). 

Similarly, sensitivity is calculated for hidden units, input-
hidden weights, and hidden-output weights as shown in 
Equations 6, 7 and 8, respectively. 
 

    (6) 

 

    (7) 

 

  (8) 

 
 
NEURAL NETWORK VISUALIZATION 
 
In designing our visualization approach, we opt to 
preserve the familiar structure of neural network so that 
understanding our visualization would come natural to 
anybody who has been exposed to neural network 
structure. We choose to visualize input, hidden, and 
output units as round shapes, and weights as edges 
connecting those round shapes. 
 
 
Input contribution visualization 
 
Figure   2   shows   an   example   of   input    contribution
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Figure 2. Visualization of input contribution. (Top left) neural network visualization of input and weight 
contributions, (top right) parallel coordinates plot shows the distribution and relation between inputs and 
outputs, (bottom) data histogram plot shows data distribution over output classes. 

 
 
 
visualization on the Haberman’s Survival dataset (Bache 
and Lichman, 2013) which consists of three input 
variables (age of patient at time of operation, patient’s 
year of operation, and number of positive axillary nodes 
detected) and two output classes (the patient survived 
five years or longer and the patient died within 5 years). 
As shown in Figure 2, the total contribution of a unit 
towards the class output is represented by the size of that 
input unit. Within a unit, sectors represent the effect of 
that input unit with respect to each output class. The 
sector size signifies the magnitude of the contribution 
while color indicates to which particular output. As 
described earlier, input contribution can be positive or 
negative. Therefore, sectors are surrounded by bands of 
red color for positive contribution and green color for 
negative contribution. 

Figure 2 clearly shows that Axillary has a strong effect 
on the class output, while Age and Year have moderate 
and low effect, respectively. To investigate our results we 
plot the parallel coordinates Figure 2 (top right) and data 
histogram Figure 2 (bottom) to study the structure and 
distribution of the dataset. The plots show that for the 
less significant inputs (Age and Year) both classes 
(Survived and Died) occur over most of the data range 
while for Axillary the classes do not span the entire range 
of data; for instance, only Died occurs in the upper  range 

of data which makes Axillary a more decisive input 
variable. Besides the overall contribution of inputs, Figure 
2 suggests that Axillary negatively contributes to output 
class Survived and positively contributes to Died. 
 
 
Weight visualization 
 
The knowledge gained by the neural network is stored, in 
its entirety, in the network weights. In our visualization, 
we represent weights as varying-width color coded 
edges. The width indicates the magnitude of contribution 
and the color (red for positive and green for negative) 
indicates the sign of contribution. Figure 2 shows the 
visualization of connection weights. Most significant 
weights, for instance the weight between Axillary and 
hidden 1 and weights between hidden 1 and both output 
classes (Survived and Died) are readily conceivable 
which supports our previously mentioned findings. 
 
 
Sensitivity visualization 
 
Our approach for visualizing sensitivity is similar to our 
visualization of input contribution previously discussed, 
where unit  size  indicates  the  significance  of  input  and
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Figure 3. Visualization of sensitivity analysis. (Left) neural network visualization of sensitivity analysis, (right) plot of changes 
of output for every pattern in the dataset. 

 
 
 
hidden units, and edge width indicates the network 
weights. Unit sectors determine the significance with 
respect to each output class. As described in Equation 5, 
sensitivity is defined by the maximum change of input 
with respect to output class; therefore it does not carry a 
positive or negative sign. Figure 3 (left) shows an 
example of our sensitivity visualization. Sectors are 
slightly spread out and laid over a gray background color 
to enhance the visual comprehension. In Figure 3 (right), 
we plot the sensitivity of output classes (Survived and 
Died) due to changes in input variables (Age, Year, and 
Axillary) for every pattern in the dataset. This plot further 
justifies our findings in Figure 3 (left). It is clearly obvious 
that Axillary is the most influential variable and as 
suggested by Figure 3 (right) it positively changes with 
respect to Died class and negatively with respect to 
Survived class. 
 
 
INPUT PRUNING AND ERROR ANALYSIS 
 
When receiving training on a neural network, one should 
use the smallest system that will fit the data (Reed, 
1993). Unfortunately, this is rarely the case because 
datasets usually contain a lot of noise data that does not 
contribute much and even slows the learning. In input 
pruning, we leave out less important features and 
evaluate the error; if the network performance 
deteriorates beyond an acceptable rate we plug the 
features back. 

Figure 4 shows an example of our visualization on the 
Car Evaluation  dataset  (Bache  and  Lichman,  2013).  It 

contains 6 input variables (buying, maintenance, doors, 
persons, lug boot and safety) and 4 output classes 
(unacceptable, acceptable, good, very good) and 1728 
instances. Figure 4(a) and (b) show visualizations of input 
contributions and sensitivity analysis, respectively. The 
figures show that Safety contributes the most to the class 
output and that both Safety and Persons are the most 
influential input variables. The figures suggest that the 
remaining input variables are less important and can be 
excluded to reduce the complexity of domain. 

A common way to carry out input pruning while 
maintaining acceptable results consists of comparing 
errors made by the network from the original patterns 
with the errors made with excluding the input of interest. 
In Figure 5, we plot error rates resultant from pruning less 
important inputs. Figure 5 (row 1, left) shows the error 
rate when including all 6 inputs. Pruning the less 
important inputs doors, lug boot, and maintenance 
improves the error rates as shown in Figure 5 (row 1, 
right), (row 2, left), and (row 2, right), respectively. As 
expected, the error increases when more important 
inputs are pruned as shown when inputs buying Figure 5 
(row 3, left) and input persons Figure 5 (row 3, right) are 
left out. The figure also shows the change of error for 
each output class due to pruned inputs. The results 
shown in the figure supports our findings. 
 
 
Conclusion 
 
We seek to promote the understanding of neural network 
internal structures by presenting a visualization  approach
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Figure 4. Visualization of car evaluating dataset. (a) input contribution visualization (b) sensitivity analysis visualization. 

 
 
 

 
 
Figure 5. Visualization of error rates after pruning less significant input variables. 

 
 
 
that is capable of enhancing the perception of input 
contributions and reducing the complexity of domain 
problems.   Our  approach   guides   the   pruning  of  less 

important features found via visual representations of 
input contributions and sensitivity analysis. We show that 
our approach can maintain a high rate of  performance  of 



 
 
 
 
a neural network while excluding noise data and less 
influential features. 
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