African Journal of
Mathematics and Computer Science Research

  • Abbreviation: Afr. J. Math. Comput. Sci. Res.
  • Language: English
  • ISSN: 2006-9731
  • DOI: 10.5897/AJMCSR
  • Start Year: 2008
  • Published Articles: 261

Full Length Research Paper

Moore-Penrose inverse of linear operators in Hilbert space

J. M. Mwanzia
  • J. M. Mwanzia
  • Department of Mathematics and Actuarial Science, Kenyatta University, P. O. Box 43844 - 00100 Nairobi, Kenya.
  • Google Scholar
M. Kavila
  • M. Kavila
  • Department of Mathematics and Actuarial Science, Kenyatta University, P. O. Box 43844 - 00100 Nairobi, Kenya.
  • Google Scholar
J. M. Khalagai
  • J. M. Khalagai
  • School of Mathematics, University of Nairobi, P. O. Box 30197- 00100 Nairobi, Kenya.
  • Google Scholar


  •  Received: 18 July 2022
  •  Accepted: 25 October 2022
  •  Published: 30 November 2022

References

Anderson A (2011). Some closed range integral operators on spaces of Analytic Function. Integral Equations Operator Theory 69(1):87-99.
Crossref

 

Baksalary OM, Trenkler G (2010). Core inverse of matrices. Linear Multilinear Algebra 58(6):681-697.
Crossref

 

Brock KG (1990). A note on commutativity of a linear operator and its Moore-Penrose inverse. Numerical Functional Analysis and Optimization 11(7-8):673-678.
Crossref

 

Campbell SL, Meyer CD (1991). Generalized inverses of linear transformations. Society for Industrial and Applied Mathematics.

 

Chen G, Wei Y, Xue Y (1996). Perturbation analysis of the least squares solution in Hilbert spaces. Linear algebra and its applications 244:69-80.
Crossref

 

Chen G, Xue Y (1997). Perturbation analysis for the operator equationTx= bin Banach spaces. Journal of Mathematical Analysis and Applications 212(1):107-125.
Crossref

 

Deng C, Wei Y (2010). Perturbation analysis of the Moore-Penrose inverse for a class of bounded operators in Hilbert Spaces. Journal of Korean Mathematical Society 47(4):831-843.
Crossref

 

Ding J (2003). New perturbation results on pseudo-inverses of linear operators in Banach spaces. Linear algebra and its applications 362:229-235.
Crossref

 

Ding J, Huang J (1997). On the continuity of generalized inverses of linear operators in Hilbert spaces. Linear algebra and its applications 262:229-242.
Crossref

 

Djordjevic DS, Dijana M (2011). Reverse order law for the Moore-Penrose Inverse in -algebras. Electronic Journal of Linear Algebra 22:92-111.
Crossref

 

Drazin MP (1958). Pseudo-inverses in associative rings and semigroups. American Mathematical Monthly 65(7):506-514.
Crossref

 

Drazin MP (2012). A class of outer generalized inverses. Linear Algebra and its Application 436(7):1909-1923.
Crossref

 

Drazin MP (2016). Left and right generalized inverses. Linear Algebra and its Application 510:64-78.
Crossref

 

Frigyes R, Bela S (1955). Functional analysis. Fredrick Ungar Publishing Company, New York.

 

Israel BA, Greville TNE (2003). Generalized inverse, theory and application. Springer-Verlag New York.

 

Israel G, Seymour G, Marinus K (2003). Basic classes of linear operators. Birkhauser Verlag, Basel.

 

James M (1978). The generalised inverse. The Mathematical Gazette 62 (420):109-114.
Crossref

 

Khalagai JM, Sheth IH (1987). 'On the operator equation . Mathematics Today 5:29-36.

 

Koliha JJ (2000). Elements of C*-algebra commuting with their Moore-Penrose inverse. Studia Mathematica 139(1):81-90.
Crossref

 

Kulkarni SH, Ramesh G (2015). Perturbation of closed range operators and Moore-Penrose inverse.

View

 

Mary X (2011). On generalized inverses and green's relations. Linear Algebra and its Application 434(8):1836-1844.
Crossref

 

Moore EH (1920). On the reciprocal of the algebraic matrix, Bulletin of American Mathematical Society 26:394-395.
Crossref

 

Mwanzia JM, Kavila M, Khalagai JM (2021). Quasiaffine inverses of linear operators in Hilbert spaces. International Journal of Science and Research 10(11): 1076-1082.

 

Penrose R (1955). A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philosophical Society 51(3):406-413.
Crossref

 

Penrose R, Todd JA (1955). A generalized inverse for matrices. Mathematics Proceedings Cambridge Philosophical Society 51(3):406-413.
Crossref

 

Rakic DS, Dincic N S, Djordjevic DS (2014). Group, Moore-Penrose, core and dual core inverse in rings with involution. Linear Algebra and its Application 463:115-133.
Crossref

 

Rao CR, Mitra SK, Mitra JK, (1971). Generalized inverse of matrices and its applications. New York: John Wiley & Sons.

 

Roger H, Johnson C (1985). Matrix Analysis. Cambridge University Press.

 

Shani J, Sivakumar KC (2013). On nonnegative Moore-Penrose inverses of perturbed matrices. Journal of Applied Mathematics. 
Crossref

 

Stewart WG (1977). On the perturbation of pseudo-inverses, projections and linear least squares problems. Society for Industrial and Applied Mathematics 19(4):634-662.
Crossref

 

Wang L, Castro-Gonzalez N, Chen J (2017). Characterizations of outer generalized inverses. Canadian Mathematical Bulletin 60(4):861-872.
Crossref

 

Wei Y (2003). The representation and approximation for the weighted Moore-Penrose inverse in Hilbert space. Journal of Applied Mathematics and Computing 136(2-3):475-486.
Crossref

 

Wei Y, Chen G (2001). Perturbation of least squares problem in Hilbert spaces. Journal of Applied Mathematics and Computing 121(2-3):177-183.
Crossref

 

Wei Y, Ding J (2001). Representations for Moore-Penrose inverses in Hilbert spaces. Applied Mathematics Letters 14(5):599-604.
Crossref

 

Wong ET (1986). Does the generalized inverse of A commute with A? Mathematical Magazine 54(4):230-232.
Crossref

 

Zhou J, Wang G (2007). Block idempotent matrices and generalized Schur complement. Journal of Applied Mathematics and Computing 188(1):246-256.
Crossref