African Journal of
Pure and Applied Chemistry

  • Abbreviation: Afr. J. Pure Appl. Chem.
  • Language: English
  • ISSN: 1996-0840
  • DOI: 10.5897/AJPAC
  • Start Year: 2007
  • Published Articles: 368

Full Length Research Paper

Biosynthesis of silver nanoparticles using Garcinia kola and its antimicrobial potential

Labulo Ayomide Hassan
  • Labulo Ayomide Hassan
  • Department of Chemistry, Federal University of Lafia, Lafia, Nasarawa State, Nigeria.
  • Google Scholar
Adesuji Temitope Elijah
  • Adesuji Temitope Elijah
  • Department of Chemistry, Federal University of Lafia, Lafia, Nasarawa State, Nigeria.
  • Google Scholar
Oseghale Charles Ojiefoh
  • Oseghale Charles Ojiefoh
  • Department of Chemistry, Federal University of Lafia, Lafia, Nasarawa State, Nigeria.
  • Google Scholar
Omojola Joseph
  • Omojola Joseph
  • Department of Physics, Federal University Lafia, Lafia, Nasarawa State, Nigeria.
  • Google Scholar
Bodede Olusola Sunday
  • Bodede Olusola Sunday
  • Department of Chemistry, College of Agriculture, Engineering and Science, University of Kwazulu- Natal, South Africa.
  • Google Scholar
Dare Enock Olugbenga
  • Dare Enock Olugbenga
  • Department of Chemistry, Federal University of Lafia, Lafia, Nasarawa State, Nigeria.
  • Google Scholar
Akinsiku Abimbola Anuoluwapo
  • Akinsiku Abimbola Anuoluwapo
  • Chemistry Department, Covenant University, Ota, Ogun State, Nigeria.
  • Google Scholar


  •  Received: 11 August 2015
  •  Accepted: 05 November 2015
  •  Published: 31 January 2016

References

Adesuyi AO, Elumm IK, Adaramola FB, Nwokocha AGM (2012). Nutritional and Phytochemical Screening of Garcinia kola. Adv. J. Food Sci. Technol. 4:9-14.

 

Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 28:313-318.
Crossref

 
 

Anjali B, Haresh K, Deshpande MP (2013). Eco-friendly phyto-synthesis of silver nanoparticles using Jatropha seedcake extract. Chin. Phys. Lett. 30(12):128103.1-128103.5

 
 

Ashokkumar S, Ravi S, Kathiravan V, Velmurugan S (2015). Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 134:34-39.
Crossref

 
 

Babak S, Gholamhoseinpoor F (2015). A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim. Acta A Mol. Biomol. Spectrosc. 134:310-315.
Crossref

 
 

Balaji DS, Basavaraja S, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2009). Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf. B Biointerfaces 68:88-92.
Crossref

 
 

Bulent U, Haluk T, Ahmet C, Ahmet M (2015). Role of irradiation in the green synthesis of silver nanoparticles mediated by fig (Ficus carica) leaf extract. Spectrochim. Acta A Mol. Biomol. Spectrosc. 135:153-161.
Crossref

 
 

Chandrakant KT, Sreekantha RD, Rohini A, Sungha P, Atul K,Sushma S (2013). Green synthesis of silver nanoparticles and their application for the development of optical fiber based hydrogen peroxide sensor. Sens. Actuators B Chem. 183:144-149.
Crossref

 
 

Chengcai L, Yuhong Z, Xiaowei Z, Yuewu Z, Yanguang W (2005). The role of poly(ethylene glycol) in the formation of silver nanoparticles. J. Colloid. Interface Sci. 288:444-448.
Crossref

 
 

Dare EO, Oseghale CO, Labulo AH, Adesuji ET, Elemike EE, Onwuka JC, Bamgbose JT (2015). Green synthesis and growth kinetics of nanosilver under bio-diversified plant extracts influence. J. Nanostruct. Chem. 5:85-94.
Crossref

 
 

Deenadayalan AK, Palanichamy V, Selvaraj MR (2014). Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 127:168-171.
Crossref

 
 

Elemike EE, Oseghale OC, Aleruchi C, Labulo AH, Owoseni MC, Mfon R, Dare EO, Adesuji ET (2014). Evaluation of antibacterial activities of silver nanoparticle green-synthesized using pineapple leaf. Micron 57:1-5.
Crossref

 
 

Ghosh S, Patil S, Ahire M, Kitture RK, Pardesi S, Swaranjit K, Bellare C, Dhavale J, Jabgunde A, Chopade B (2012). Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents A. Int. J. Nanomed. 7:483-496.

 
 

Gnanasekar S, Chandrakasan G, Karuppiah K, Vedagiri H, Kumpati P, Sivaramakrishnan S (2012). Phyto-synthesis of silver nanoscale particles using Morinda citrifolia L. and its inhibitory activity against human pathogens. Colloids Surf. B Biointerfaces 95:235-240.
Crossref

 
 

Gurunathan S, Kalishwaralal K, Vaidyanathan R, Deepak V, Pandian SRK, Muniyandi J (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B Biointerfaces 74:328-335.
Crossref

 
 

He SY,Guo ZR, Zhang Y, Zhang S, Wang J, Gu N (2007). Biosynthesis of gold nanoparticles using the bacteria Rhodo pseudomonas capsulate. Mater. Lett. 61:3984-3987.
Crossref

 
 

Hebeish A, El-Shafei A, Sharaf S, Zaghloul S (2011). Novel precursors for green synthesis and application of silver nanoparticles in the realm of cotton finishing. Carbohydr. Polym. 84:605-613.
Crossref

 
 

Hoskote AKK, Badal KM, Kesarla MK, Sireesh BM, Tammina SK, Pavithra M, Asit RG (2014). Antimicrobial and antioxidant activities of Mimusops elengi seed extract mediated isotropic silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 130:13-18.
Crossref

 
 

Ibikunle GF, Emmanuel OO (2011). Evaluation of Garcinia Kola Nuts For Antitrichomonal Activity. J. Pharm. Biol. Sci. 2:264-269.

 
 

Jain D, Daima HK, Kachhwaha S, Kothari SL (2009). Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Dig. J. Nanomater. Biostruct. 4:723-726.

 
 

Judita P, Dovile J, Irena M, Joana S, Ina J, Rokas K (2014). Biosynthesis of silver nanoparticles using lingonberry and cranberry juices and their antimicrobial activity. Colloids Surf. B Biointerfaces 121:214-221.
Crossref

 
 

Korbekandi H, Iravani S, Abbasi S (2012). Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei. J. Chem. Technol. Biotechnol. 87:932-937.
Crossref

 
 

LÜ F, Gao Y, Huang J, Sun D, Li Q (2014). Roles of Biomolecules in the Biosynthesis of Silver Nanoparticles: Case of Gardenia jasminoides extract. Chin. J. Chem. Eng. 22(6):706-712.
Crossref

 
 

Lu Y, Yin Y, Mayers BT, Xia Y (2002). Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett. 2(3):183-186.
Crossref

 
 

Mariselvama R, Ranjitsingh AJA, Usha RNA, Kalirajan K, Padmalatha C, Mosae SP (2014). Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 129:537-541.
Crossref

 
 

Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajaykumar PV, Alam M,Sastry M, Kumar R (2001). Bioreduction of AuCl4− Ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. 40:3585-3588.
Crossref

 
 

Narendra S, Khanna PK (2007). In situ synthesis of silver nano-particles in polymethylmethacrylate. Mater. Chem. Phys. 104:367-372.
Crossref

 
 

Oxana V, Kharissova HV, Rasika D, Boris IK, Betsabee OP, Victor M, Jimenez P (2013). The greener synthesis of nanoparticles. Trends Biotechnol. 31(4):240-248.
Crossref

 
 

Pradnya N, Poulomi M, Sudhir K (2014). Biosynthesis characterization and antibacterial studies of silver nanoparticles using pods extract of Acacia auriculiformis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 129:121-124.
Crossref

 
 

Renquan L, Yang D, Cui D, Wang Z, Guo L (2012). Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells. Int. J. Nanomedicine 7:2101-2107.

 
 

Sheny DS, Mathew J, Philip D (2011). Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim. Acta A Mol. Biomol. Spectrosc. 79:254-262.
Crossref

 
 

Shinde NM, Lokhande AC, Lokhande CD (2014). A green synthesis method for large area silver thin film containing nanoparticles. J. Photochem. Photobiol. B 136:19-25.
Crossref

 
 

Sondi I, Salopek-Sondi B (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid. Int. Sci. 275:177-182.
Crossref

 
 

Sun Y, Xia Y (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176-2179.
Crossref

 
 

Tien DC, Liao CY, Huang JC, Tseng KH, Lung JK, Tsung TT, Kao WS, Tsai TH, Cheng TW, Yu BS, Lin HM, Stobinski, L (2008). Novel technique for preparing a nano-silver water suspension by arc-discharge method. Rev. Adv. Mater. Sci. 18:750-756.

 
 

Tsuji T, Kakita T, Tsuji M (2003). Preparation of nano-size particle of silver with femtosecond laser ablation in water. Appl. Surf. Sci. 206:314-320.
Crossref

 
 

Venkata SK, Susmila AG, Subba RY, Prasad TNVKV, Varada RA, Sai Gopa DVR (2014). Biofabrication of silver nanoparticles using Andrographis paniculata, Eur. J. Med. Chem. 73:135-140.
Crossref

 
 

Yang H, Song X, Zhang X, Ao W, Qiu G (2003). Synthesis of vanadium-doped SnO2 nanoparticles by chemical co-precipitation method". Mater. Lett. 57(20):3124-3127.
Crossref

 
 

Yong Z, Yu SH, Wang CY, Li XG, Zhu YR,Chen ZY (1999).A Novel Ultraviolet Irradiation Photoreduction Technique for the Preparation of Single- Crystal Ag Nanorods and Ag Dendrites. Adv. Mater. 11(10):850-852.
Crossref