International Journal of
Computer Engineering Research

  • Abbreviation: Int. J. Comput. Eng. Res.
  • Language: English
  • ISSN: 2141-6494
  • DOI: 10.5897/IJCER
  • Start Year: 2010
  • Published Articles: 33

Review

Modelling, simulation and optimisation of a pressure retarded osmosis power station: The co- vs. counter-current setting

O. O. Bolorunduro
  • O. O. Bolorunduro
  • Department of Mathematics, Universitat of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany.
  • Google Scholar
I. Gasser
  • I. Gasser
  • Department of Mathematics, Universitat of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany.
  • Google Scholar


  •  Received: 18 September 2023
  •  Accepted: 08 March 2024
  •  Published: 31 July 2024

References

Abdelkader BA, Sharqawy MH (2022). Challanges facing pressure retarded osmosis commercialisation: A short review. Energies 15(19):7325.
Crossref

 

Achilli A, Cath TY, Childress AE (2009). Power generation with pressure retarded osmosis: an experimental and theoretical investigation. Desalination 343(1-2):42-52.
Crossref

 

Achilli A, Childress AE (2010). Pressure retarded osmosis: From the vision of Sidney Loeb to the first prototype installation - Review. Desalination 261(3):205-211.
Crossref

 

Alzainati N, Saleem H, Altaee A, Zaidi SJ, Mohsen M, Hawari A, Millar GJ (2021). Pressure retarded osmosis: Advancement, challenges and potential. Journal of Water Process Engineering 40:101950.
Crossref

 

Ahmed P, Rohini (2012) Osmotic Power.

View

 

Bharadwaj D, Fyles TM, Struchtrup H (2016). Multistage Pressure Retarded Osmosis. Journal of Non-Equilibrium Thermodynamics 41(4):327-347.
Crossref

 

Bharadwaj D, Struchtrup H (2017). Large scale energy storage using multistage osmotic processes: Approaching high efficiency and energy density. Sustainable Energy and Fuels 1(3):599-614.
Crossref

 

Bolorunduro OO (2021). Modelling, Simulation and Optimization of Pressure Retarded Osmosis (PRO) power station: co vs. counter-current setting. MSc Thesis, Department of Mathematics, Universität Hamburg, Germany.
Crossref

 

Chen Y, Alanezi AA, Zhou J, Altaee A, Shaheed MA (2019). Optimisation of module pressure retarded osmosis membrane for maximum energy extraction. Journal of Water Process Engineering 32:100935.
Crossref

 

Di Michele F, Felaco E, Gasser I, Serbinovskiy A, Struchtrup H (2019). Modeling, simulation and optimization of a pressure retarded osmosis power station. Applied Mathematics and Computation 353:189-207.
Crossref

 

Gerstandt K, Peinemann KV, Skilhagen SE, Thorsen T, Holt T (2008). Membrane processes in energy supply for an osmotic power plant. Desalination 224(1):64-70
Crossref

 

International Energy Agency (2018). 2012 Key World Energy. 

 

Kim J, Jeong K, Park MJ, Shon HK (2015). Recent Advances in Osmotic Energy Generation via Pressure-Retarded Osmosis (PRO): A Review. Energies 8(10):11821-11845
Crossref

 

Lee KL, Baker RW, Lonsdale HK (1981). Membranes for power generation by pressure-retarded osmosis. Journal of Membrane Science 8(2):141-171
Crossref

 

Lin S, Straub AP, Elimelech M (2014). Thermodynamic limits of extractable energy by pressure retarded osmosis. Energy and Environmental Science 7(8):2706-2714.
Crossref

 

Loeb S (1976). Production of electric power by mixing fresh and salt water in hydroelectric pile. Journal of Membrane Science 1:49-63
Crossref

 

Loeb S, Norman R (1975). Osmotic power plants. Science 189(4203):654-655
Crossref

 

Logan BE, Elimelech M (2012). Membrane-based processes for sustainable power generation using water. Nature 488(7411):313-319.
Crossref

 

Maisonneuve J, Pillay P, Laflamme CB (2015). Pressure osmotic power system model considering non-ideal effects. Renewable Energy 75:416-424.
Crossref

 

Mathworks Help Centre, Fmincon, THEMATHWORKS INC.FMINCON (2022).

View

 

Norman R (1974). Water salination: A source of energy. Science 186:350-352.
Crossref

 

O'Toole G, Jones L, Coutinho C, Hayes C, Napoles M, Achilli A (2016). River-to-sea pressure retarded osmosis: Resource utilization in a full-scale facility. Desalination 389:39-51.
Crossref

 

Pattle R (1954). Production of electric power by mixing fresh and salt water in hydroelectric pile. Nature 174(4431):660-660.
Crossref

 

Pattle R (1974). Water salination: a source of energy. Science 186(4161):350-352.
Crossref

 

Ruiz-Garcia A, Tadeo F, Nuez I (2022). Simulation tool for fullscale PRO systems using SWMMs. Desalination 541:116025.
Crossref

 

Senthil S, Senthilmurugan S (2016). Reverse osmosis-pressure retarded osmosis hybrid systems: modelling, simulation and optimization. Desalination 389:78-97
Crossref

 

Straub AP, Lin S, Elimelech M (2014). Module-Scale Analysis of Pressure Retarded Osmosis: Performance Limitations and Implications for Full-Scale Operation. Environmental Science and Technology 48:1243512444.
Crossref

 

Struchtrup H (2014). Thermodynamics and Energy Conversion. Springer, Heidelberg.
Crossref

 

Sundaramoorthy S, Srinivasan G, Murthy DVR (2011). An analytical model for spiral wound reverse osmosis membranes modules: Part I- Model development and parameter estimation. Desalination 280(1-3):403-411.
Crossref

 

Sung-Soo H, Won R, Myung-Suk C, Seung OL, Gui-Yung C (2014). Numerical studies on the pressure-retarded osmosis (PRO) system with the spiral wound module fo power generation. Desalination and Water Treatment 52(34-36):6333-6341.
Crossref

 

Torleif H, Thorsent ET (2009). Semi-permeable membrane for use in osmosis, and method and plant for providing elevated pressure by osmosis to create power. US Patent No 7,566,402.

 

Wang Z, Hou D, Lin S (2016). Gross vs. net energy: Towards a rational framework for assessing the practical viability of pressure retarded osmosis. Journal of Membrane Science 503:132-147.
Crossref

 

Yang W, Song L, Zhao J, Chen Y, HU B (2018). Numerical analysis of performance of ideal counter-current flow pressure retarded osmosis. Desalination 433:41-47.
Crossref