Journal of
Infectious Diseases and Immunity

  • Abbreviation: J. Infect. Dis. Immun.
  • Language: English
  • ISSN: 2141-2375
  • DOI: 10.5897/JIDI
  • Start Year: 2009
  • Published Articles: 94

Review

Molecular mechanism of Clofazimine resistance in tuberculosis

Sumaia Khatun
  • Sumaia Khatun
  • Department of Botany, Faculty of Faculty of Biology, Chuadanga Govt. College-0801, National University of Bangladesh, Bangladesh.
  • Google Scholar
Sadia Afrin
  • Sadia Afrin
  • Department of Genetic Engineering and Biotechnology, Faculty of Life and earth sciences, University of Rajshahi, Rajshahi-6205, Bangladesh.
  • Google Scholar
Shah Alam
  • Shah Alam
  • Department of Biochemistry and Molecular Biology, Guangzhou Institutes of Biomedicine Science and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China. 4Department of Biochemistry, Faculty of Biomedicine Science and Health, University of Chinese Academy of Science (UCAS), Beijing 100049, China
  • Google Scholar


  •  Received: 27 February 2020
  •  Accepted: 09 June 2020
  •  Published: 31 August 2023

References

Almeida D, Ioerger T, Tyagi S, Li SY, Mdluli K, Andries K, Grosset J, Sacchettini J, Nuermberger E (2016). Mutations in pepQ confer low- level resistance to bedaquiline and clofazimine in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy 60(8):4590- 4599. 
Crossref

 

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic local alignment search tool. Journal of Molecular Biology 215(3):403- 410. 
Crossref

 

Ammerman NC, Swanson RV, Tapley A, Moodley C, Ngcobo B, Adamson J, Singh SD (2016). Clofazimine has delayed antimicrobial activity against Mycobacterium tuberculosis both in vitro and in vivo. Journal of Antimicrobial Chemotherapy dkw417. doi: 10.1093/jac/dkw417
Crossref

 

Andries K, Verhasselt P, Guillemont J, Gohlmann H W, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P (2005). A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307(5707):223-227. .
Crossref

 

Arbiser JL, Moschella SL (1995). Clofazimine: a review of its medical uses and mechanisms of action. Journal of the American Academy of Dermatology 32(2):241-247. 
Crossref

 

Baik J, Rosania GR (2011). Molecular imaging of intracellular drug- membrane aggregate formation. Molecular Pharmaceutics 8(5):1742- 1749. 
Crossref

 

Barry VC, Belton JG, Conalty ML, Den-steny JM, Edward DW, Van JF, Winder F (1957). A new series of phenazines (rimino-compounds) with high antituberculosis activity. Nature 179(4568):1013-1015. 
Crossref

 

Belachew T, Yaheya S, Tilahun N, Gebrie E, Seid R, Nega T, Biset S. Multidrug-Resistant Tuberculosis Treatment Outcome and Associated Factors at the University of Gondar Comprehensive Specialized Hospital: A Ten-Year Retrospective Study. Infection and Drug Resistance 2891-2899.
Crossref

 

Browne SG, Hogerzeil LM (1962). " B 663" in the treatment of leprosy. Preliminary report of a pilot trial. Leprosy Review 33(1):6-10.
Crossref

 

Chen Y, Chen J, Zhang S, Shi W, Zhang W, Zhu M, Zhang Y (2018). Novel mutations associated with clofazimine resistance in Mycobacterium abscessus. Antimicrobial agents and Chemotherapy 62(7):e00544-18. 
Crossref

 

Chuaprapaisilp T, Piamphongsant T (1978). Treatment of pustular psoriasis with clofazimine. British Journal of Dermatology 99(3):303- 305. 
Crossref

 

Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, Parkhill J, Malla B, Berg S, Thwaites G, Yeboah-Manu D, Bothamley G, Mei J, Wei L, Bentley S, Harris SR, Niemann S, Diel R, Aseffa A, Gao Q, Young D, Gagneux S (2013). Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nature genetics 45(10):1176-1182.
Crossref

 

Copin R, Coscollá M, Efstathiadis E, Gagneux S, Ernst JD (2014). Impact of in vitro evolution on antigenic diversity of Mycobacterium bovis bacillus Calmette-Guerin (BCG). Vaccine 32(45):5998- 6004.
Crossref

 

Dagron S (2016). Review of the national tuberculosis programme in Belarus 8-18

 

Dalcolmo M, Gayoso R, Sotgiu G, D'Ambrosio L, Rocha JL, Borga L, Fandinho F, Braga JU, Galesi VM, Barreira D, Sanchez DA (2017). Effectiveness and safety of clofaziminein multidrug-resistant tuberculosis: a nationwide report from Brazil. European Respiratory Journal 49(3):1602445
Crossref

 

Dey T, Brigden G, Cox H, Shubber Z, Cooke G, Ford N (2012). Outcomes of clofazimine for the treatment of drug-resistant tuberculosis: a systematic review and meta-analysis. Journal of antimicrobial chemotherapy 68(2):284-293 
Crossref

 

Ebenezer GJ, Norman G, Joseph GA, Daniel S, Job CK (2002). Drug resistant-Mycobacterium leprae-results of mouse footpad studies from a laboratory in south India. Indian journal of leprosy 74(4):301-312.

 

Gandhi NR, Moll A, Sturm AW, Pawinski R, Govender T, Lalloo U, Friedland G (2006). Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. The Lancet 368(9547):1575-1580. .
hCrossref

 

Gartner E, Anderson R, Van Rensburg CE, Imkamp FMJH (1982). The in vitro and in vivo effects of clofazimine on the motility of neutrophils and transformation of lymphocytes from normal individuals. Leprosy review 53(2):85-90.
Crossref

 

Gopal M, Padayatchi N, Metcalfe JZ, O'Donnell MR (2013). Systematic review of clofazimine for the treatment of drug-resistant tuberculosis. The International journal of tuberculosis and lung disease 17(8):1001-1007.
Crossref

 

Grant SS, Kaufmann BB, Chand NS, Haseley N, Hung DT (2012). Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proceedings of the National Academy of Sciences 109(30):12147-12152.
Crossref

 

Hameed A, MM Islam, Chhotaray C, Wang C, Y Liu, Y Tan, X Li, Tan S, Delorme V, Yew WW, Liu J, Zhang T (2018). Molecular Targets Related Drug Resistance Mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis Strains. Frontiers in cellular and infection microbiology 8:114. 
Crossref

 

Hartkoorn RC, Uplekar S, Cole ST (2014). Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrobial agents and chemotherapy 58(5):2979-2981. doi:10.1128/AAC.00037-14 
Crossref

 

inhibit the complement-mediated solubilization of pre-formed immune complexes in vitro. International Journal of Immunopharmacology 14(2):269-273. 
Crossref

 

Islam MM, Hameed HA, Mugweru J, Chhotaray C, Wang C, Tan Y, Liu J, Li X, Tan S, Ojima I, Yew WW, Nuermberger E, Lamichhane G, Zhang T (2017). Drug resistance mechanisms and novel drug targets for tuberculosis therapy. Journal of genetics and genomics 44(1):21-37.
Crossref

 

Ismail N, Omar SV, Ismail NA, Peters RP (2018). In vitro approaches for generation of Mycobacterium tuberculosis mutants resistant to bedaquiline, clofazimine or linezolid and identification of associated genetic variants. Journal of microbiological methods 153:1-9. 
Crossref

 

Ivan M, Petrenko T, Keiser O, Estill J, Revyakina O, Felker I, Raviglione MC, Krasnov V, Schwartz Y (2019). Variations in tuberculosis prevalence, Russian Federation: a multivariate approach. Bulletin of the World Health Organization 97(11):737.
Crossref

 

Kashyap A, Sehgal VN, Sahu A, Saha K (1992). Anti-leprosy drugs inhibit the complement-mediated solubilization of pre-formed immune complexes in vitro. International journal of immunopharmacology 14(2):269-273.
Crossref

 

Kaufman MB (2013). 2012 American Society of Health-System Pharmacists Midyear Clinical Meeting & Exhibition. Pharmacy and Therapeutics 38(2):119.

 

Koul A, Dendouga N, Vergauwen K, Molenberghs B, Vranckx L, Willebrords R, Bald D (2007). Diarylquinolines target subunit c of mycobacterial ATP synthase. Nature chemical biology 3(6):323-324.. 
Crossref

 

Kozak RA, Alexander DC, Liao R, Sherman DR, Behr M (2011). Region of difference 2 contributes to virulence of Mycobacterium tuberculosis. Infection and immunity 79(1):59-66. 
Crossref

 

Lange CD, Chesov J, Heyckendorf (2019). Clofazimine for the treatment of multidrug-resistant tuberculosis Clinical Microbiology and Infection 25(2):128-130.
Crossref

 

Lu Y, Wang B, Zhao WJ, Zheng MQ, Li P, Fu L, Liang BW (2010). A study on the activity of clofazimine with antituberculous drugs against Mycobacterium tuberculosis. Zhonghua jie he he hu xi za zhi=Zhonghua jiehe he huxi zazhi= Chinese journal of tuberculosis and respiratory diseases 33(9):675-678.

 

Martinez E, Hennessy D, Jelfs P, Crighton T, Chen SC, Sintchenko V (2018). Mutations associated with in vitro resistance to bedaquiline in

 

Mycobacterium tuberculosis isolates in Australia. Tuberculosis 111:31-34. doi:10.1016/j.tube.2018.04.007.
Crossref

 

Milano A, Pasca MR, Provvedi R, Lucarelli AP, Manina G, Ribeiro LDJL, Riccardi G (2009). Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL5 efflux system. Tuberculosis 89(1):84-90. 
Crossref

 

Murugesan D, Ray PC, Bayliss T, Prosser GA, Harrison JR, Green K, Warner DF (2018). 2-Mercapto-Quinazolinones as Inhibitors of Type II NADH Dehydrogenase and Mycobacterium tuberculosis: Structure- Activity Relationships, Mechanism of Action and Absorption, Distribution, Metabolism, and Excretion Characterization. ACS infectious diseases 4(6):954-969.doi:10.1021/acsinfecdis.7b00275
Crossref

 

Olayanju O, Limberis J, Esmail A, Oelofse S, Gina P, Pietersen E, Fadul M, Warren R, Dheda K (2018). Long-term bedaquiline-related treatment outcomes in patients with extensively drug-resistant tuberculosis from South Africa European Respiratory Journal 51(5):1800544. DOI: 10.1183/13993003.00544-2018
Crossref

 

Oliva B, O'Neill AJ, Miller K, Stubbings W, Chopra I (2004). Anti- staphylococcal activity and mode of action of clofazimine. Journal of Antimicrobial Chemotherapy 53(3):435-440. 
Crossref

 

Pang Y, Zong Z, Huo F, Jing W, Ma Y, Dong L, Huang H (2017). In vitro drug susceptibility of bedaquiline, delamanid, linezolid, clofazimine, moxifloxacin, and gatifloxacin against extensively drug-resistant tuberculosis in Beijing, China. Antimicrobial agents and chemotherapy 61(10):e00900-17. 
Crossref

 

Parak RB, Wadee AA (1991). The synergistic effects of gamma interferon and clofazimine on phagocyte function: Restoration of inhibition due to a 25 kilodalton fraction fromMycobacterium tuberculosis. Biotherapy 3(3):265-272. 
Crossref

 

Parker SK, Curtin KM, Vasil ML (2007). Purification and characterization of mycobacterial phospholipase A: an activity associated with mycobacterial cutinase. Journal of bacteriology 189(11):4153-4160.
Crossref

 

Pearson WR (2013). An introduction to sequence similarity ("homology") searching. Current protocols in bioinformatics 42(1):3-1.
Crossref

 

Petrella S, Cambau E, Chauffour A, Andries K, Jarlier V, Sougakoff W (2006). Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria. Antimicrobial agents and chemotherapy 50(8):2853-2856. 
Crossref

 

Phelan J, Coll F, McNerney R, Ascher DB, Pires DE, Furnham N, Ramsay A (2016). Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance. BMC medicine 14(1):1-13. 
Crossref

 

Podmore P, Burrows D (1986). Clofazimine-an effective treatment for Melkersson?Rosenthal syndrome or Miescher's cheilitis. Clinical and experimental dermatology 11(2):173-178. 
Crossref

 

Radhakrishnan A, Kumar N, Wright CC, Chou TH, Tringides ML, Bolla JR, Edward WY (2014). Crystal structure of the transcriptional regulator Rv0678 of Mycobacterium tuberculosis. Journal of Biological Chemistry 289(23):16526-16540. 
Crossref

 

Reddy VM, O'Sullivan JF, Gangadharam PR (1999). Antimycobacterial activities of riminophenazines. Journal of Antimicrobial Chemotherapy 43(5):615-623. 
Crossref

 

Sanchini A, Semmler T, Mao L, Kumar N, Dematheis F, Tandon K, Lewin A (2016). A hypervariable genomic island identified in clinical and environmental Mycobacterium avium subsp. hominissuis isolates from Germany. International Journal of Medical Microbiology 306(7):495-503.
Crossref

 

Segala E, Sougakoff W, Nevejans-Chauffour A, Jarlier V, Petrella S (2012). New mutations in the mycobacterial ATP synthase: new insights into the binding of the diarylquinoline TMC207 to the ATP synthase C-ring structure. Antimicrobial agents and chemotherapy 56(5):2326-2334. 
Crossref

 

Seung KJ, Keshavjee S, Rich ML. Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis. Cold Spring Harbor perspectives in medicine 5(9).
Crossref

 

Shen GH, Wu BD, Hu ST, Lin CF, Wu KM, Chen JH (2010). High efficacy of clofazimine and its synergistic effect with amikacin against rapidly growing mycobacteria. International journal of antimicrobial agents 35(4):400-404. 
Crossref

 

Singh S, Bouzinbi N, Chaturvedi V, Godreuil S, Kremer L (2014). In vitro evaluation of a new drug combination against clinical isolates belonging to the Mycobacterium abscessus complex. Clinical Microbiology and Infection 20(12):01124-01127. 
Crossref

 

Tasneen R, Li SY, Peloquin CA, Taylor D, William K N, Andries K, Nuermberger EL (2011). Sterilizing activity of novel TMC207-and PA- 824-containing regimens in a murine model of tuberculosis. Antimicrobial agents and chemotherapy 55(12):5485-5492 
Crossref

 

Tyagi S, Ammerman NC, Li SY, Adamson J, Converse PJ, Swanson RV, Almeida DV, Grosset JH (2015). Clofazimine shortens the duration of the first-line treatment regimen for experimental chemotherapy of tuberculosis. Proceedings of the National Academy of Sciences of the United States of America 112(3):869-874.
Crossref

 

Van Rensburg CE, Gatner EM, Imkamp FM, Anderson R (1982). Effects of clofazimine alone or combined with dapsone on neutrophil and lymphocyte functions in normal individuals and patients with lepromatous leprosy. Antimicrobial agents and chemotherapy 21(5):693-697. 
Crossref

 

Wadee AA, Anderson R, Rabson AR (1988). Clofazimine reverses the inhibitory effect of Mycobacteriwn tuberculosis derived factors on phagocyte intracellular killing mechanisms. Journal of antimicrobial chemotherapy 21(1):65-74. 
Crossref

 

World Health Organization (WHO) (2015). The Selection and Use of Essential Medicines: Report of the WHO Expert Committee, 2015 (including the 19th WHO Model List of Essential Medicines and the 5th WHO Model List of Essential Medicines for Children) (Vol. 994). World Health Organization.

 

World Health Organization (WHO) (2019). Global tuberculosis report 2018. World Health Organization..http://www.who.int/selection_medicines/committees/su bcommittee/2/eeb1098%5b1%5d.pdf

 

Xu J, Wang B, Hu M, Huo F, Guo S, Jing W, Lu Y (2017). Primary clofazimine and bedaquiline resistance among isolates from patients with multidrug-resistant tuberculosis. Antimicrobial agents and chemotherapy 61(6):10-1128. 
Crossref

 

Zhang S, Chen, Cui P, Shi W, Zhang W, Zhang Y (2015). Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy 70(9):2507-2510.
Crossref

 

Zumla A, Nahid P, Cole ST (2013). Advances in the development of new tuberculosis drugs and treatment regimens. Nature reviews Drug discovery 12(5):388-404. 
Crossref