African Journal of
Agricultural Research

  • Abbreviation: Afr. J. Agric. Res.
  • Language: English
  • ISSN: 1991-637X
  • DOI: 10.5897/AJAR
  • Start Year: 2006
  • Published Articles: 6863

Full Length Research Paper

Effect of low N- stress to N, P, K contents and quantitative trait locus (QTL) analysis in maize kernels and stalks

J. H. Tang
  • J. H. Tang
  • College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
  • Google Scholar
Y. P. Wang
  • Y. P. Wang
  • College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
  • Google Scholar
Y. M. Hu
  • Y. M. Hu
  • College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
  • Google Scholar
C. L. Wang
  • C. L. Wang
  • College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
  • Google Scholar
G. W. Tian
  • G. W. Tian
  • College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
  • Google Scholar
Z. H. Liu
  • Z. H. Liu
  • College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
  • Google Scholar


  •  Received: 13 December 2014
  •  Accepted: 03 June 2015
  •  Published: 02 July 2015

References

Agrama HAS, Zakaria AG, Said FB, Tuinstra M (1999). Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol. Breed. 5:187-195.
Crossref
 
Aildson PD, Stephen CM, David SJ, Jorge de CK (2005). Grain quality of Brazilian maize genotypes as influenced by nitrogen level. Crop Sci. 45:1958–1964.
Crossref
 
Asíns MJ (2002). Present and future of quantitative trait locus analysis in plant breeding. Plant Breed. 121(4):281-291.
Crossref
 
Bao SD (2000). Analysis of soil agricultural chemical. Beijing, China Agricultural Press.
 
Bertin P, Gallais A (2001). Genetic variation for nitrogen use efficiency in a set of recombinant inbred lines. II. QTL detection and coincidences. Maydica 46:53-68.
 
Hirel B, Bertin P, Quilleré I, Bourdoncle W, Attagant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A (2001). Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol. 125(3):1258-1270.
Crossref
 
Cai GX, Chen DL, Ding H, Pacholski A, Fan XH, Zhu ZL (2002). Nitrogen losses from fertilizer applied to maize,wheat and rice in the north China plain. Nutr. Cycl. Agroecosyst. 63:187-195.
Crossref
 
Chen FJ, Mi GH, Zhang FS, Wang Y, Liu XS, Chun L (2003). Nitrogen use efficiency in some of main maize hybrids grown in north China. J. Maize Sci. 11(2):78-82.
 
Churchill GA, Doerge RW (1994). Empirical threshold values for quantitative trait mapping. Genetics 138(3):963-971.
 
Doerge RW, Churchill GA (1996). Permutation tests for multiple loci affecting a quantitative character. Genetics 142(1):285-294.
 
Gallais A, Hirel B (2004). An approach to the genetics of nitrogen use efficiency in maize. J. Exper. Bot. 55(396):295-306.
Crossref
 
Huang SW, Sun GF, Jin JY, Zuo YB, He P (2004). Plant Nutrition and Fertilizer. Science 10(3):225-230.
 
Knapp SJ, Stroup WW, Ross WM (1985). Exact confidence intervals for heritability on a progeny mean basis. Crop Sci. 25:192-194.
Crossref
 
Lan JH, Li XH, Gao SR, Zhang BS, Zhang SH (2005). QTL analysis of yield components in maize under different environments. Acta Agronom. Sin. 31(10):1253-1259.
 
Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987). Map Maker: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1:174-181.
Crossref
 
Liu CS (2006). Soil and Fertilizer, China Agricultural University Press, Beijing pp.146-148.
 
Liu MQ, Yu ZR, Yun H, Konijn NT (2006). Fertilizer requirements for wheat and maize in China: the QUEFTS approach. Nutr. Cycl. Agroecosyst. 74:245-258.
Crossref
 
Liu ZH, Xie HL, Tian GW, Chen SJ, Wang CL, Hu YM, Tang JH (2008). QTL mapping of nutrient components in maize kernels under low nitrogen conditions. Plant Breed. 127:279-285.
Crossref
 
Lübberstedt T, Melchinger A E, SchÇ’n CC, Utz HF, Klein D (1997). QTL mapping in testcrosses of European flint lines of maize: I. Comparison of different testers for forage yield traits. Crop Sci. 37:921-931.
Crossref
 
Machado AT, Magalhaes JR, Magnavaca R, Silva MR (1992). Activity of enzymes involved in the nitrogen metabolism in different maize genotypes. Rev. Bras. Fisiol. Vegetal. 4(1):45-47.
 
Martín U, Steven JCB, Fred EB (2008). Physiological N response of field-grown maize hybrids (Zea mays L.) with divergent yield potential and grain protein concentration. Plant Soil 316:151-160.
 
Monneveux P, Zaidi PH, Sanchez C (2005). Population density and low nitrogen affects yield-associated traits in tropical maize. Crop Sci. 45:535-545.
Crossref
 
Oikeh SO, Kling JG, Okoruwa AE (1998). Nitrogen fertilizer management effects on maize grain quality in the west African Moist Savanna. Crop Sci. 38(4):1056-1061.
Crossref
 
Pan WL, Camberato JJ, Moll RH, Kamprath EJ, Jackson WA (1995). Altering source-sink relationships in prolific maize hybrids: Consequences for nitrogen uptake and remobilization. Crop Sci. 35:836-845.
Crossref
 
Presterl T, Seitz G, Landbeck M, Thiemt EM, Schmidt W, Geiger HH (2003). Improving nitrogen-use efficiency in European maize: estimation of quantitative genetic parameters. Crop Sci. 43:1259-1265.
Crossref
 
Raja V (2001). Effect of nitrogen and plant population on yield and quality of super sweet corn. Indian J. Agron. 46(2):246-249.
 
Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984). Ribosomal DNA spacer length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population, and population dynamics. Proc. Natl. Acad. Sci. USA. 81(17):8014-8018.
Crossref
 
Stuber CW, Edwards MD, Wendel JF (1987). Molecular marker-facilitated investigation of quantitative trait loci in maize II. Factors influencing yield and its component traits. Crop Sci. 27:639-648.
Crossref
 
Tang H, Yan JB, Huang YQ, Zheng YL, Li JS (2005a). QTL mapping of five agronomic traits in maize. Acta Genet. Sin. 32(2):203-209.
 
Tang JH, Xie HL, Huang SM, Hu YM, Liu ZH, Ji HQ, Kou ZA (2005b). The Changes of the Content for Chlorophyll and Photosynthetic Productivity in Maize Inbred Lines under the Low-nitrogen Stress. Acta Agric. Boraeali-Sin. 20(5):10-12.
 
Teng Y, Zhang ZX, Wei YX, Wang ZB, Wang MX (2005). Effect of soybean yield and soil water in semiarid district of northeast under the different ratios of N, P and K. J. Northeast Agric. Univ. 36(3):273-279.
 
Veldboom LR, Lee M (1996). Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: Grain yield and yield components. Crop Sci. 36:1310-1319.
Crossref
 
Wang S, Basten CJ, Zeng ZB (2004). Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh, NC.
 
Wu ZJ (1997). Problems in production and utilization of China's chemical fertilizer and their solutions. Sci. Technol. Rev. 9:37-39.
 
Zeng ZB (1994). Precision mapping of quantitative trait loci. Genetics 136(4):1457-1468.
 
Zhang FS, Mi GH, Liu JA (1997). Advances in the genetic improvement of nitrogen efficiency in maize. J. Agric. Biotechnol. 5(2):112-117.
 
Zhang WL, Tian ZX, Zhang N, Li XQ (1995). Investigation of nitrate pollution in ground water due to nitrogen fertilization in agriculture in North China. Plant Nutr. Fert. Sci. 1(2):80-87.
 
Zhu ZL, Chen DL (2002). Nitrogen fertilizer use in China- contributions to food production, impacts on the environment and best management strategies. Nutr. Cycl. Agroecosyst. 63:117-127.
Crossref
 
Zhuang JY, Lin HX, Lu J (1997). Analysis of QTL x environment interaction for yield components and plant height in rice. Theor. Appl. Genet. 95:799-808.
Crossref