African Journal of
Mathematics and Computer Science Research

  • Abbreviation: Afr. J. Math. Comput. Sci. Res.
  • Language: English
  • ISSN: 2006-9731
  • DOI: 10.5897/AJMCSR
  • Start Year: 2008
  • Published Articles: 254

Full Length Research Paper

Maximum flow–minimum cost algorithm of a distribution company in Ghana: Case of ‘NAAZO’ Bottling Company, Tamale Metropolis

M. Dawuni
  • M. Dawuni
  • Department of Statistics, Mathematics and Science, Tamale Polytechnic, Tamale-Ghana
  • Google Scholar
K. F. Darkwah
  • K. F. Darkwah
  • Mathematics Department, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi-Ghana
  • Google Scholar


  •  Received: 20 August 2014
  •  Accepted: 15 April 2015
  •  Published: 30 April 2015

References

Anany L (2007) Introduction to the design & analysis of algorithms / Anany Levitin. -3rd ed. Includes bibliographical references and index. ISBN-13: 978-0-13-231681-1, ISBN-10: 0-13-231681-1
 
Busacker RG, Saaty TL (1965). Finite Graphs and Networks: An Introduction with Applications, McGraw-Hill, N. Y.
 
Chopra S, Meindl P (2007). Supply Chain Management, Strategy, Planning, and Operation, Third Edition. Pearson Education, Inc., Upper Saddle River, New Jesey, 07458. ISBN 0-13-173042-8.
 
Damian JK, Garrett MO (1991a). The Minimum Cost Flow Problem and the Network Simplex Solution Method, a Masters dissertation presented to the National University of Ireland, University College Dublin.
 
Domain JK, Garett MON (1991b). Maximum cost flow problem and the network Simplex Solution Methods: a dissertation presented to the National University of Ireland in partial fulfillment of the requirements for the degree of Masters of Management Science at University of Dublin.
 
David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ (2006). Dynamic causal modelling of evoked responses in EEG and MEG. NeuroImage 30:1255-1272.
Crossref
 
Dantzig G, Fulkerson R, Johnson S (1950). "Solution of a large-scale traveling-salesman problem", Operations Research 2:393-410.
 
Ford LR, Fulkerson DR (1962). Flows in Networks (Princeton University Press, Princeton.
 
Goldfarb D, Jin Z, Lin Y (2002). A polynomial dual simplex algorithm for the generalized circulation problem. Mathematical Programming, 91:271–288.
Crossref
 
Goldberg AV, Tarjan RE (1990). Finding minimum-cost circulation by successive approximation. Math. Oper. Res. 15:430-466.
Crossref
 
Kelvin DW (1999). A Dissertation Presented to Faculty of the Graduate School of Cornell University in Partial Fulfillment for the Degree of Doctor of Philosophy.
 
O'Connor DR (1980). 'Fast Primal Transportation Algorithms'. Working Paper.
 
Shigeno M, Iwata S, McCormick ST (2000). Relaxed most negative cycle and most positive cut canceling algorithms for minimum cost flow. Math. Oper. Res. 25:76–104.
Crossref
 
Thomas H, Cormen CE, Leiserson RL, Rivest CS (2002). Introduction to Algorithms, 2nd ed. The MIT Press Cambridge, Massachusetts London, England McGraw-Hill Book Company Cormen, ISBN 0-262-03293-7 (hc.: alk. paper, MIT Press).-ISBN 0-07-013151-1 (McGraw-Hill)
 
Timon T (2008). Max-Flow Min-Cut Algorithm, thesis submitted in partial fulfillment for master in Mathematics at the University of Wien.
 
Vijaya R (2007). Maximum Flow, Linear Programming, University of Texas at Austin Department of Computer Science. CS357:AGORITHMS. Spring 2007.