African Journal of
Microbiology Research

  • Abbreviation: Afr. J. Microbiol. Res.
  • Language: English
  • ISSN: 1996-0808
  • DOI: 10.5897/AJMR
  • Start Year: 2007
  • Published Articles: 5233

Full Length Research Paper

Eugenol and linalool: Comparison of their antibacterial and antifungal activities

Rehab Mahmoud Abd El-Baky
  • Rehab Mahmoud Abd El-Baky
  • Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, 61519-Minia, Egypt.
  • Google Scholar
Zeinab Shawky Hashem
  • Zeinab Shawky Hashem
  • Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, 61519-Minia, Egypt.
  • Google Scholar


  •  Received: 28 August 2016
  •  Accepted: 25 October 2016
  •  Published: 28 November 2016

References

Alviano WS, Mendonca-Filho RR, Alviano DS, Bizzo HR, Souto-Padron T, Rodrigues ML, Bolognese AM, Alviano CS, Souza MMG (2005).Antimicrobial activity of Croton cajucara Benth linalool-rich essential oil on artificial biofilms and planktonic microorganisms. Oral Microbiol. Immunol. 20:101-105.
Crossref

 

Bassolé IHN, Lamien-Meda A, Bay-ala B, Tirogo S, Franz C, Novak J, Nebié RC, and Dicko MH (2010). Composition and antimi-crobial activities of Lippiamulti-flora Moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules 15:7825-7839.
Crossref

 
 

Ben Arfa A, Combes S, Preziosi-Belloy L, Gontard N, Chalier P (2006). Antimicrobial activity of carvacrol related to its chemical structure. Lett. Appl. Microbiol. 43:149-154
Crossref

 
 

Bennis S, Chami F, Chami N, Bouchikhi T, Remmal A (2004a). Surface alteration of Saccharomyces cerevisiae induced by thymol and eugenol. Lett. Appl. Microbiol. 38:454-458.
Crossref

 
 

Bennis S, Chami F, Chami N, Rhayour K, Tantaoui-Elaraki A, Remmal A (2004b). Eugenol induces damage of bacterial and fungal envelope. Moroccan J. Biol. 1

 
 

Benyahya M, Senaud J, Bohatier J (1992). Etude en microscopie électronique. Annales des Sciences Naturelles, Paris 13:103-119.

 
 

Bozin B, Mimica-Dukic N, Simin N, Anackov G (2006). Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 54:1822-1828.
Crossref

 
 

Braga PC, Sasso MD, Culici M, Alfieri M (2007). Eugenol and thymol, alone or in combination, induce morphological alterations in the envelope of Candida albicans. Fitoterapia 78: 396-400.
Crossref

 
 

Burt S (2004). Essential oils: their antibacterial properties and potential applications in foods – a review. Int. J. Food Microbiol. 94:223-253.
Crossref

 
 

Caballero B, Trugo LC, Finglas PM (2003). Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Elsevier Academic Press: Amsterdam, The Netherlands.

 
 

Canton R, Morosini MI (2011). Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol Rev. 35(5):977-91.
Crossref

 
 

Catlin BW (1975). Iodometric detection of Haemophilus beta lactamase; rapid presumptive test for ampicillin resistance. Antimicrob. Agents Chemother. 7:265-270.
Crossref

 
 

Chaieb K, Zmantar T, Ksouri R, Hajlaoui H, Mahdouani K, Abdelly C., Bakhrouf A (2007). Antioxidant properties of the essential oil of Eugenia caryophyllata and its antifungal activity against a large number of clinical Candida species. Mycoses 50:403-406.
Crossref

 
 

Chami F, Chami N, Bennis S, Trouillas J, Remmal A (2004a). Evaluation of carvacrol and eugenol as prophylaxis and treatment of vaginal candidiasis in an immunosuppressed rat model. J. Antimicrob. Chemother. 54:909-914.
Crossref

 
 

Chami N, Chami F, Bennis S, Trouillas J, Remmal A (2004b). Antifungal treatment with carvacrol and eugenol of oral candidiasis in immunosuppressed rats. Braz J. Infect. Dis. 8:217-226.
Crossref

 
 

CLSI (2012). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard, 9th ed., CLSI document M07-A9.

 
 

Clinical and Laboratory Standards Institute, CLSI (2002). 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA, CLSI, Reference Method for Broth Dilution Antifungal Suscept- ibility Testing of Yeasts, Approved Standard, 2nd ed., NCCLS document M27- A2. CLSI, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087- 1898, USA,

 
 

Derakhshan S, Sattari M, Bigdeli M (2008). Effect of subinhibitory concentrations of cumin (Cuminum cyminum L.) seed essential oil and alcoholic extract on the morphology, capsule expression and urease activity of Klebsiella pneumoniae. International Journal of Antimicrob. Agents 32:432-436.
Crossref

 
 

Devi KP, Nisha SA, Sakthivel R, Pandain SK (2010). Eugenol (an essential oil of clove) acts as antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacol.130:107-115.
Crossref

 
 

Dhara L, Tripathi A (2013). Antimicrobial activity of eugenol and cinnamaldehyde against extended spectrum beta lactamase producing enterobacteriaceae by in vitro and molecular docking analysis. Europ. J. Integr. Med. 5(6):527-536
Crossref

 
 

Di Pasqua R, Betts G, Hoskins N, Edwards M, Ercolini D, Mauriello G (2007). Membrane toxicity of antimicrobial compounds from essential oils. J. Agric. Food Chem. 55:4863-4870.
Crossref

 
 

Echeverrigaray S, Michelim L, Delamare AL, Andrade C P, da Costa SOP, Zacaria J (2008). The Effect of monoterpenes on swarming differentiation and haemolysin activity in Proteus mirabilis. Molecules 13:3107-3116
Crossref

 
 

Ellepola AN, Samaranayake LP (1998). The effect of limited exposure to antifungal agents on the germ tube formation of oral Candida albicans. J. Oral Pathol. Med. 27:213-219.
Crossref

 
 

Gabel CV, Berg HC (2003). The speed of the flagellar rotary motor of Escherichia coli varies linearly with proton motive force. Proc. Natl. Acad. Sci. USA; 100:8748-8751.
Crossref

 
 

Gill AO, Holley RA (2004). Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Appl. Environ. Microbiol. 70:5750-5755.
Crossref

 
 

Gill AO, Holley RA (2006a). Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int. J. Food Microbiol. 108:1-9.
Crossref

 
 

Gill AO, Holley RA (2006b). Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. Int. J. Food Microbiol. 111:170-174.
Crossref

 
 

Hsu C, Lai W, Chuang K, Lee M, Tsai Y (2013). The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans. Med. Mycol. 51:473-482
Crossref

 
 

Hussain AI, Anwar F, Sherazi STH, Przybylskmi R. (2008). Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chemistry 108(3):986-995.
Crossref

 
 

Jung HG, Fahey GC (1983). Nutritional implications of phenolic monomers and lignin: A review. J. Anim. Sci. 57:206-219.
Crossref

 
 

Kamatou GP, Vermaak I, Viljoen AM (2012). Eugenol—From the Remote Maluku Islands to the International Market Place: A Review of a Remarkable and Versatile Molecule. Molecules 17:6953-6981.
Crossref

 
 

Koneman EW (2006). Test for determining inhibitory. In: Koneman's color atlas and textbook of diagnostic microbiology. 5th ed. Lippincott Williams and Wilkins, editors. Philadelphia. p.1001.

 
 

Laekeman GM, van Hoof L, Haemers A, Berghe DAV, Herman AG, Vlietinck AJ (1990). Eugenol a valuable compound for in vitro experimental research and worthwhile for further in vivo investigation. Phytother. Res. 4:90-96.
Crossref

 
 

Leclercq R. (2002). Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin. Infect. Dis. 34(4):482-492.
Crossref

 
 

Leite AM, Lima EDO, de Souza EL, Diniz MDFFM, Trajano VN, de Medeiros IA (2007). Inhibitory effect of β-pinene, α-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria. Braz. J. Pharm. Sci. 43:121-126.
Crossref

 
 

Levison ME (2004). Pharmacodynamics of antimicrobial drugs. Infect. Dis. Clin. North Am. 18(3):451-465.
Crossref

 
 

López P, Sa’nchez C, Batlle R, Nerı’n C (2005). Solid- and vapour-phase antimicrobial activities of six essential oils: susceptibility of selected foodborne bacterial and fungal strains. J. Agric. Food Chem. 53:6939-6946.
Crossref

 
 

Mansouri S, Amari A, Asad AG (2005): Inhibitory effect of some medicinal plants from Iran on swarming motility of Proteus rods. J. Med. Sci. 5:216-221.
Crossref

 
 

Maroncle N, Rich C, Forestier C (2006). The role of Klebsiella pneumoniae urease in intestinal colonization and resistance to gastrointestinal stress. Rev. Microbiol. 157:184-193.
Crossref

 
 

Mo H, Elson CC (2004). Studies on the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention. Exp. Biol. Med. 229:567-585.

 
 

Moleyar V, Narasimham P (1992). Antibacterial activity of essential oil components. Int. J. Food Microbiol. 16:337-342.
Crossref

 
 

Moon SE, Kim HY, Cha JD (2011). Synergistic effect between clove oil and its major compounds and antibiotics against oral bacteria. Arch. Oral Biol. 56:907-916.
Crossref

 
 

Naigre R, Kalck P, Roques C, Rocux I, Michel G (1996). Comparison of antimicrobial properties of monoterpenes and their carbonylated products. Planta Med. 62:275-277.
Crossref

 
 

Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V (2013). Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 6:1451-1474.
Crossref

 
 

Neu HC (1992). The crisis in antibiotic resistance. Science 257(5073):1064-1073.
Crossref

 
 

Oussalah M, Caillet S, Saucier L, Lacroix M (2007). Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 18(5):414-420.
Crossref

 
 

Oyedemi SO, Okoh AI, Mabinya LV, Pirochenva G, Afolayan AJ (2009). The proposed mechanism of bactericidal action of eugenol, α-terpineol and γ -terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus vulgaris and Escherichia coli. Afr. J. Biotechnol. 8:1280–1286.

 
 

Pei RS, Zhou F, Ji BP, Xu J (2009). Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. J. Food Sci. 74:M379-383.
Crossref

 
 

Pinto E, Ribeiro IC, Ferreira NJ, Fortes CE, Fonseca PA, Figueiral MH (2008). Correlation between enzyme production, germ tube formation and susceptibility to fluconazole in Candida species isolated from patients with denture-related stomatitis and control individuals. J Oral Pathol Med 37:587-592.
Crossref

 
 

Pinto E, Vale-Silva L, Cavaleiro C, Salgueiro L (2009). Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species Journal of Medical Microbiology 58:1454-1462.
Crossref

 
 

Rico-Molina D, Aparicio-Ozores G, Dorantes-Alvarez L, Hernández-Sanchez H (2012). Antimicrobial activity of cinnamate-eugenol: Synergistic potential, evidence of efflux pumps and amino acid effects. Am. J. Food Technol. 7:289-300.
Crossref

 
 

Russell AD (1995). Mechanisms of bacterial resistance to biocides. Int. Biodeter. Biodegr. 36(3):247-265.
Crossref

 
 

Sanders CC, Sanders WE. (1992). beta-Lactam resistance in gram-negative bacteria: global trends and clinical impact. Clin. Infect. Dis. 15:824-839.
Crossref

 
 

Souza CM, Pereira Junior SA, Moraes T da S, Damasceno JL, Amorim Mendes S, Dias HJ, Stefani R, Tavares DC, Martins CH, Crotti AE, Mendes-Giannini MJ, Pires RH (2016). Antifungal activity of plant-derived essential oils on Candida tropicalis planktonic and biofilms cells. Med. Mycol. 54(5):515-23
Crossref

 
 

Tenover FC (2006). Mechanisms of antimicrobial resistance in bacteria. Am. J. Infect. Control 34: S3-S10 and S64-S73.

 
 

Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, et al., (2005). Mechanisms of antibacterial activity of three monoterpenes. Antimicrob. Agents Chemother. 49:2474-2478.
Crossref

 
 

Tsukiyama R, Katsura H, Tokuriki N, Kobayashi M (2002). Antibacterial activity of licochalcone A against spore-forming bacteria. Antimicrob. Agents Chemother. 46:1226-1230.
Crossref

 
 

van Zyl RL, Seatlholo ST, van Vuuren SF, Viljoen AM (2006). The biological activities of 20 nature identical essential oil constituents. J. Essent. Oil Res. 18:129-133.

 
 

WHO-World Health Organization (2012). Antimicrobial resistance WHO media centre [updated March 2012; cited 2012 May 5].

 
 

Wojnicz D, Tichaczek-Goska D (2013). Effect of sub-minimum inhibitory concentrations of ciprofloxacin, amikacin and colistin on biofilm formation and virulence factors of Escherichia coli planktonic and biofilm forms isolated from human urine. Braz. J. Microbiol. 44(1):259-265.
Crossref

 
 

Zore GB, Thakre AD, Jadhav S, Karuppayil SM (2011). Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest cell cycle. Phytomedicine 18:1181-1190.
Crossref