African Journal of
Pharmacy and Pharmacology

  • Abbreviation: Afr. J. Pharm. Pharmacol.
  • Language: English
  • ISSN: 1996-0816
  • DOI: 10.5897/AJPP
  • Start Year: 2007
  • Published Articles: 2285

Full Length Research Paper

Projections of pharmacokinetic parameter estimates from mid-dose plasma concentrations in individuals on efavirenz: A novel approach

Tafireyi Nemaura
  • Tafireyi Nemaura
  • Department of Clinical Pharmacology, College of Health Sciences, University of Zimbabwe.
  • Google Scholar


  •  Received: 23 June 2014
  •  Accepted: 21 August 2014
  •  Published: 08 October 2014

References

 

Aksnes DL, Egge JK (1991). A theoretical model for nutrient uptake in phytoplankton. Mar. Ecol Prog. Ser. 70:65–72.
Crossref
 
Almond LM, Hoggard PG, Edirisinghe D, Khoo SH, Back DJ (2005). Intracellular and plasma pharmacokinetics of efavirenz in HIV-infected individuals. J. Antimicrob. Chemother. 56(4):738–44.
Crossref
 
Burger D, van der Heiden I, la Porte C, van der Ende M, Groeneveld P, Richter C, van Schaik R (2006). Interpatient variability in the pharmacokinetics of the HIV non-nucleoside reverse transcriptase inhibitor efavirenz: the effect of gender, race, and CYP2B6 polymorphism. Br. J. Clin. Pharmacol. 61(2):148–54.
Crossref
 
Cabrera SE, Santos D, Valverde MP, Domínguez-Gil A, González F, Luna G, MJG (2009). Population Pharmacokinetics of Efavirenz in HIV patients: Influences of CYP2B6 Genotype. Antimicrob. Agents Chemother. 53:2791–2798.
Crossref
 
Cristofoletti R, Nair A, Abrahamsson B, Groot DW, Kopp S, Langguth P (2013). Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Efavirenz. J. Pharm. Sci. 102(2):318–329.
Crossref
 
Csajka C, Marzolini K, Fattinger L, De’costerd A, Fellay J, Telenti A, Biollaz J, Buclin T (2003). Population pharmacokinetics and effects of efavirenz in patients with human immunodeficiency virus infection. Clin. Pharmacol. Ther. 73:20–30
Crossref
 
Ette EI, Williams PJ (2007). Pharmacometrics. The Science of Quan-titative Pharmacology, (1st ed.). Wiley: Hoboken, New Jersey, USA.
Pubmed
 
Friedland G, Khoo S, Jack C, Lalloo U (2006). Administration of efavirenz (600 mg/day) with rifampicin results in highly variable levels but excellent clinical outcomes in patients treated for tuberculosis and HIV. J. Antimicrob. Chemother. 58:1299-1302.
Crossref
 
Habtewold A, Amogne W, Makonnen E, Yimer G, Riedel KD, Ueda N, Aklillu E (2011). Long-term effect of efavirenz autoinduction on plasma/peripheral blood mononuclear cell drug exposure and CD4 count is influenced by UGT2B7 and CYP2B6 genotypes among HIV patients. J. Antimicrob. Chemother. 66(10):2350-2361.
Crossref
 
Jiang F, Desta Z, Shon JH, Yeo CW, Kim HS, Liu KH, Shin JG (2013). Effects of clopidogrel and itraconazole on the disposition of efavirenz and its hydroxyl metabolites: exploration of a novel CYP2B6 phenotyping index. Br. J. Clin. Pharmacol. 75(1):244–53.
Crossref
 
Johnson KA, Goody RS (2011). The original Michaelis constant: transla-tion of the 1913 Michaelis-Menten paper. Biochemistry 50(39):8264–8269.
Crossref
 
Kwara A, Lartey M, Sagoe KW, Xexemeku F, Kenu E, Oliver-Commey J, Boima V, Sagoe A, Boamah I, Greenblatt DJ, Court MH (2008). Pharmacokinetics of efavirenz when co-administered with rifampin in TB/HIV co-infected patients: pharmacogenetic effect of CYP2B6 variation. J. Clin. Pharmacol. 48(9):1032–1040.
Crossref
 
Kwara A, Lartey M, Sagoe KW, Kenu E, Court MH (2009). CYP2B6, CYP2A6 and UGT2B7 genetic polymorphisms are predictors of efavirenz mid-dose concentration in HIV-infected patients. AIDS, 23(16):2101-2106.
Crossref
 
Manosuthi W, Sungkanuparph S, Tantanathip P, Mankatitham W, Lueangniyomkul A, Thongyen S, Ruxrungtham K (2009). Body weight cutoff for daily dosage of efavirenz and 60-week efficacy of efavirenz-based regimen in human immunodeficiency virus and tuberculosis coinfected patients receiving rifampin. Antimicrob. Agents Chemother. 53(10):4545–8.
Crossref
 
Mould DR, Upton RN (2013). Basic Concepts in Population Modeling, Simulation, and Model-Based Drug Development—Part 2: Introduction to Pharmacokinetic Modeling Methods. CPT: Pharmacometrics Syst. Pharmacol. 2(4):e38.
 
Mukonzo JK, Röshammar D, Waako P, Andersson M, Fukasawa T, Milani L, Aklillu E (2009). A novel polymorphism in ABCB1 gene, CYP2B6*6 and sex predict single-dose efavirenz population pharmacokinetics in Ugandans. Br. J. Clin. Pharmacol. 68(5):690–699.
Crossref
 
Mukonzo JK, Owen JS, Ogwal-Okeng J, Kuteesa JB, Nanzigu S, Sewankambo N, Thabane L, Gustafsson LL, Ross C, Aklillu E, (2014). Pharmacogenetic-Based Efavirenz Dose modification: Suggestions for an African population and the different CYP2B6 Genotypes. Plos one 9(1):e86919.
Crossref
 
Nemaura T, Nhachi C, Masimirembwa C (2012). Impact of gender, weight and CYP2B6 genotype on efavirenz exposure in patients on HIV/AIDS and TB treatment: Implications for individualising therapy. Afr. J. Pharm. Clin. Pharmacol. 6(29):2188-2193.
 
Nyakutira C, Röshammar D, Chigutsa E, Chonzi P, Ashton M, Nhachi C, Masimirembwa C (2008). High prevalence of the CYP2B6 516G-->T(*6) variant and effect on the population pharmacokinetics of efavirenz in HIV/AIDS outpatients in Zimbabwe. Eur. J. Clin. Pharmacol. 64(4):357–365.
Crossref
 
Portier C, Tritscher A, Kohn M, Sewall C, Clark G, Edler L, Lucier G (1993). Ligand/receptor binding for 2,3,7,8-TCDD: implications for risk assessment. Fundam. Appl. Toxicol. 20(1):48–56.
Crossref
 
Pedral-Sampaio DB, Alves CR, Netto EM, Brites C, Oliveira AS, Badaro R (2004). Efficacy and safety of Efavirenz in HIV patients on Rifampin for tuberculosis. Braz. J. Infect. Dis. 8(3):211–216.
Crossref
 
Rekić D, Röshammar D, Mukonzo J, Ashton M (2011). In silico prediction of efavirenz and rifampicin drug-drug interaction considering weight and CYP2B6 phenotype. Brit. J. Clin. Pharmacol 71(4):536–543.
Crossref
 
Ritchie MD, Haas DW, Motsinger AA, Donahue JP, Erdem H, Raffanti S, Sterling TR (2006). Drug transporter and metabolizing enzyme gene variants and nonnucleoside reverse-transcriptase inhibitor hepatotoxicity. Clin. Infect. Dis. 43(6):779–782.
Crossref
 
Ribaudo HJ, Haas DW, Tierney C, Kim RB, Wilkinson GR, Gulick RM, Acosta EP (2006). Pharmacogenetics of plasma efavirenz exposure after treatment discontinuation: an Adult AIDS Clinical Trials Group Study. Clin. Infect. Dis. 42(3):401–407.
Crossref
 
Ribaudo HJ, Liu H, Schwab M, Schaeffeler E, Motsinger-reif AA, Ritchie MD, Haas DW (2011). Effect of CYP2B6, ABCB1, and CYP3A5 poly-morphisms on efavirenz pharmacokinetics and treatment response: an AIDS Clinical Trials Group study. J. Infect. Dis. 202(5):717–722.
Crossref
 
Sánchez A, Cabrera S, Santos D, Valverde MP, Fuertes A, Domínguez-Gil A, García MJ (2011). Population pharmacokinetic/ pharmacogenetic model for optimization of efavirenz therapy in Caucasian HIV-infected patients. Antimicrob. Agents Chemother. 55(11):5314–5324.
Crossref
 
Siccardi M, Almond L, Schipani A, Csajka C, Marzolini C, Wyen C, Back D (2012). Pharmacokinetic and pharmacodynamic analysis of efavirenz dose reduction using an in vitro-in vivo extrapolation model. Clin. Pharmacol. Ther. 92(4):494–502.
Crossref
 
Smith PF, DiCenzo R, Morse GD (2001). Clinical uses of non-nucleoside reverse transcriptase inhibitors. Clin. Pharmacokinet. 10(4):217–229.
 
Toutain PL, Bousquet-Mélou A (2004a). Plasma terminal half-life. J. Vet. Pharmacol. Ther. 27(6):427–439.
Crossref
 
Toutain PL, Bousquet-Mélou A (2004b). Volumes of distribution. J. Vet. Pharmacol. Ther. 27(6):441–453.
Crossref
 
Van Luin M, Gras L, Richter C, Van Der Ende ME, Prins JM, De Wolf F, Wit FW (2009). Efavirenz dose reduction is safe in patients with high plasma concentrations and may prevent efavirenz discontinuations. J. Acquir. Immune Defic. Syndr. 52:240–245.
Crossref
 
Yilmaz A, Watson V, Dickinson L, Back D (2012). Efavirenz pharmacokinetics in cerebrospinal fluid and plasma over a 24-hour dosing interval. Antimicrob. Agents Chemother. 56(9):4583–4585.
Crossref