International Journal of
Biodiversity and Conservation

  • Abbreviation: Int. J. Biodivers. Conserv.
  • Language: English
  • ISSN: 2141-243X
  • DOI: 10.5897/IJBC
  • Start Year: 2009
  • Published Articles: 679

Full Length Research Paper

Growth and corallite characteristics of Kenyan scleractinian corals under the influence of sediment discharge

Shaaban A. Mwachireya
  • Shaaban A. Mwachireya
  • Kenya Marine and Fisheries Research Institute, PO BOX 81651, Mombasa 80100, Keny, Department. of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6 Canada.
  • Google Scholar
Tim R. McClanahan
  • Tim R. McClanahan
  • Wildlife Conservation Society, Marine Programs, Bronx, NY, 10460, USA.
  • Google Scholar
Brian E. Hartwick
  • Brian E. Hartwick
  • Department. of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6 Canada.
  • Google Scholar
Isabelle M. Cote
  • Isabelle M. Cote
  • Department. of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6 Canada.
  • Google Scholar
Lance Lesack
  • Lance Lesack
  • Department of Geography, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6 Canada.
  • Google Scholar


  •  Received: 12 January 2015
  •  Accepted: 29 June 2015
  •  Published: 30 August 2015

References

Allemand D, Tambutté É, Zoccola D, Tambutté S (2011). Coral calcification, cells to reefs. In Coral reefs: an ecosystem in transition. Springer, Netherlands pp. 119-150.
Crossref

 

Anthony K (2006). Enhanced energy status of corals on coastal, high-turbidity reefs Mar. Ecol. Prog. Ser, 319: 111-116.
Crossref

 

 

Anthony KRN (2000). Enhanced particle feeding capacity of corals on turbid reef (Great Barrier Reef, Australia) Coral Reefs 19: 59-67.
Crossref

 

 

Anthony KN, Fabricius KE (2000). Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J. Exp. Mar. Biol. Ecol. 252:221-253.
Crossref

 

 

Ateweberhan M, Feary DA, Keshavmurthy S, Chen A, Schleyer MH, Sheppard CRC (2013). Climate change impacts on coral reefs Synergies with local effects, possibilities for acclimation, and management implications. Mar. Pollut. Bull, http://dx.doi.org/10.1016/j.marpolbul.2013.06.011
Crossref

 

 

Atkinson MJ, Carlson B., Crow GL (1995). Coral growth in high nutrient, low pH sea water: a case study of corals cultured at the Waikiki Aquarium, Honolulu Hawaii Coral Reefs 14:215-233.
Crossref

 

 

Barnes DJ, Devereux M J (1984). Productivity and calcification on a coral reef: a survey using pH and oxygen electrode techniques. J. Exp. Mar. Biol. Ecol. 79(3): 213-231.
Crossref

 

 

Bartley R, Bainbridge ZT, Lewis SE, Kroon FJ, Wilkinson SN, Brodie, JE, Silburn DM (2013). Relating sediment impacts on coral reefs to watershed sources, processes and management: Rev. Sci.Total Environ. 468-469 (2014) 1138–1153
Crossref

 

 

Belda CA, Cuff C, Yellowlees D (1993). Modification of shell formation in their giant clam Tridacna gigas at elevated nutrient levels in sea water Mar. Biol. 117:251-257.
Crossref

 

 

Brakel W (1984). Seasonal dynamics in suspended sediments plumes from the Tana and Sabaki rivers, Kenya: analysis of landsat imagery. Remote Sens. Environ. 16: 165-173.
Crossref

 

 

Bryant D, Burke L, McManus JW, Spalding M (1998). Reefs at Risk: A Map-based Indicator of Threats to the World's Coral Reefs. World Resources Institute, Washington, DC, USA, 56pp.

 

 

Bucher DJ, Harrison PL (2000). Growth responses of reef coral Acropora longicyanthus to elevated inorganic nutrients: do response to nutrients vary among coral taxa? Proc, 9th Intl. Coral Reef Symp, Bali Indonesia.

 

 

Bucher D J, Harriot V J, Roberts L G (1998). Skeletal microdensity, porosity and bulk density acroporid corals. J. Exp. Mar. Biol. Ecol. 228:117-136
Crossref

 

 

Cabra-Tena RA, Reyes-Bonilla H, Lluch-Cota S, Paz-García DA, Calderón-Aguilera LE, Norzagaray-López O, Balart EF (2013). Different calcification rates in males and females of the coral Porites panamensis in the Gulf of California Mar. Ecol. Prog. Ser. 476:1-8, 2013
Crossref

 

 

Carricart-Gavinet JP (2011). Coral skeletal extension rate: An environmental signal or a subject to inaccuracies? J. Exp. Mar. Biol. Ecol. 405:73-79
Crossref

 

 

Carricart-Gavinet JP (2007). Annual density banding in massive coral skeletons: result of growth strategies to inhabit reefs with high microborers' activity? DOI 10.1007/s00227-007-0780-3

 

 

Carricart-Gavinet JP (2004). Sea surface temperature and the growth of the West Atlantic reef-building coral Montastraea annularis J. Exp. Mar. Biol. Ecol. 302: 249-260
Crossref

 

 

Carricart-Gavinet JP, Merino M (2001). Growth response of the reef building coral Montastrea annularis along a gradient of continental influence in Southern Gulf of Mexico. Bull. Mar. Sci. 66 (1): 133-146.

 

 

Carricart-Gavinet JP, Beltrán-Torres AU, Merino M, Ruiz-Zárate MA (2000). Skeleton extension, density and calcification rate of the reef building coral Montastrea annularis (Ellis and Solander) in the Gulf of Mexico. Bull. Mar. Sci. 66(1):215-224.

 

 

Chen T, Li S, Yu K, Zheng Z, Wang L, Chen T (2015). Increasing temperature anomalies reduce coral growth in the Weizhou Island, northern South China Sea Estuar, Coast. Shelf Sci. 130:121e126.

 

 

Crabbe MJC, Carlin JP (2007). Industrial sedimentation lowers coral growth rates in turbid lagoon environment, Discovery Bay, Jamaica Intl. J. Integr. Biol. 1:37-40.

 

 

Crabbe MJC, Smith DJ (2005). Sediment impact on growth rates of Acropora and Porites corals from fringing reefs of Sulawesi, Indonesia. Coral Reefs 24:437-441.
Crossref

 

 

Cooper TF, De'ath G, Fabricius KA, Lough JM (2008). Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob. Chang. Biol. 14:529-538.
Crossref

 

 

Cruz-Pi-ón G, Carricart-Gavinet JP, Espinoza-Avalos J (2003). Monthly skeletal extension rates of the hermatypic corals Montastrea annularis and Montastrea faveolata: biological and environmental controls. Mar. Biol. 143:491-500.
Crossref

 

 

De'ath G, Lough JM, Fabricius KE (2009). Declining coral calcification on the Great Barrier Reef Science 323:116-119.

 

 

D'Olivo JP, McCulloch MT, Eggins SM, Trotter J (2014). Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs Biogeosci. Discuss. 11: 11443-11479.
Crossref

 

 

D'Olivo JP, McCulloch MT, Judd K (2013). Long-term records of coral calcification across the 30 central Great Barrier Reef: assessing the impacts of river runoff and climate change, Coral Reefs, 32, 999–1012, doi:10.1007/s00338-013-1071-8,
Crossref

 

 

Dunne T (1979). Sediment yield and land use in tropical catchments J. Hydrol. 42: 281-300
Crossref

 

 

Edinger EN, Jompa J, Limmon GV, Widjatmoko W, Heikoop JM, Risk MJ (2000). Normal coral growth rates on dying reefs: Are coral growth rates good indicators of reef health? Mar. Pollut. Bull. 5: 404-425.
Crossref

 

 

Fabricius KE (2011). Factors determining the resilience of coral reefs to eutrophication: a review and conceptual model. In: Dubinsky Z and Stambler N (ends): Coral Reefs: An Ecosystem in Transition. Springer, pp.493-505 DOI: 10.1007/978-94-007-0114-4_28
Crossref

 

 

Fabricius KE (2005). Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis Mar. Pollut. Bull. 50: 125–146.
Crossref

 

 

Fleitmann D, Dunbar RB, McCulloch M, Mudelsee M, Vuille M, McClanahan TR, Cole JE, Eggins S (2007). East African soil erosion recorded in a 300 year old coral colony from Kenya. Geophy. Res. Lett. 34: 1-5.
Crossref

 

 

GESAMP (2001). Protecting the oceans from land based activities. Land based sources and activities affecting the quality and uses of the marine, coastal and associated freshwater environment. UNDP, Nairobi.

 

 

Golbuu Y, van Woesik R, Richmond RH, Harrison P, Fabricius KE (2011). River discharge reduces reef coral diversity in Palau Mar. Pollut. Bull. 62: 824–831
Crossref

 

 

Hughes AD, Grottoli AG (2013). Heterotrophic compensation: a possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress? PLoS One 8: e8117.
Crossref

 

 

Klein D Y, Barana MW, Obilor LA (2015). Coral growth under thermal stress and different levels of light intensity in Acropora aspera. Scholarly and Creative Works Conference. Paper 55.http://scholar.dominican.edu/scw/scw2015/Posters/55

 

 

Kleypas JA, Buddemmeir RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999). Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284(5411): 118-120
Crossref

 

 

Kumara WAAU, Kumara PBTP, Cumaranatunga PRT (2015). Spatial differences in the growth rates of Pocillopora damicornis associated with sedimentation rate and light intensity at Polhena patchy reef, southern Sri Lanka Sri Lanka J. Aquat. Sci. 20 (1):47-58.
Crossref

 

 

Kuta KG, Richardson LL (2002). Ecological aspects of black band disease of corals: relationships between disease incidence and environmental. Coral Reefs 21:21:393-398

 

 

Kružić P, Sršen P, Benković L (2012). The impact of seawater temperature on coral growth parameters of the colonial coral Cladocora caespitosa (Anthozoa, Scleractinia) in the eastern Adriatic Sea DOI 10.1007/s10347-012-0306-4

 

 

Lauzinger S, Anthony KRN, Willis BL (2003). Reproductive energy investment in corals: scaling with module size. Oecologia 136: 524-531.
Crossref

 

 

Larsson AI, van Oevelen D, Purser A, Thomsen L (2013). Tolerance to long-term exposure of suspended benthic sediments and drill cuttings in the cold-water coral Ophelia pertusa Mar. Pollut. Bull. http://dx.doi.org/10.1016/j.marpolbul.2013.02.033
Crossref

 

 

Maina J, McClanahan TR, Venus V, Ateweberhan M, Madin J (2011). Global gradients of coral exposure to environmental stresses and implications for local management PLoS One, 6(8), e23064
Crossref

 

 

McClanahan TR, Obura DO (1997) Sedimentation effects on shallow coral communities in Kenya. J. Exp. Mar. Biol. Ecol. 209: 103-122.
Crossref

 

 

McClanahan TR (1988). Seasonality in East Africa's coastal waters Mar. Ecol. Prog. Ser. 44(2):191-199.
Crossref

 

 

McCulloch M, Fallon S, Wyndha T, Hendy E, Lough J, Barnes D (2003). Coral records of increased sediment flux to the inner Barrier Reef since European settlement. Nature 421: 727-730.
Crossref

 

 

McDonald IA, Perry CT (2003). Biological degradation of coral reef framework in a turbid lagoon environment, Discovery Bay, Jamaica. Coral Reefs 22:523-535.
Crossref

 

 

Mwashote BM, Ohowa BO, Wawiye PO (2005). Spatial and temporal distribution of dissolved inorganic nutrients and phytoplankton in Mida Creek, Kenya. Wetl. Ecol. Manag, 13(6), 599-614.
Crossref

 

 

Nakajima R, Yoshida T, Fuchinoue Y, Okashita T, Maekawa T, Kushair MRM, Othman BHR, Toda T (2013). Sedimentation Impacts on the Growth Rates of the Scleractinian Coral Acropora formosa from Fringing Reefs of Tioman Island, Malaysia Sains Malaysiana 42(9): 1201–1205

 

 

Ohowa BO (1996). Seasonal variations of the nutrient fluxes into the Indian Ocean from the Sabaki River, Kenya. Disc. Innov. 8(3), 265-274.

 

 

Obura, DO (1995). Environmental stress and life history strategies, a case study of corals and river sediment from Malindi Kenya. PhD Thesis, University of Miami 326p.

 

 

Padilla-Gami-o JL, Hanson KM, Stat M, Gates RD (2012). Phenotypic plasticity of the coral Porites rus: Acclimatization responses to a turbid environment J. Exp. Mar. Biol. Ecol. 434–435: 71–80
Crossref

 

 

Pollock F, Lamb JJB, Field ST, Heron SF, Schaffelke B, Shedraw G, Bourne DG, Willis BL (2014). Sediment and turbidity associated with offshore dredging increase coral disease prevalence on nearby reefs PlosOne DOI: 10.1371/journal.pone.0102498
Crossref

 

 

Prouty NG, Storlazzi CD, McCutcheon AL, Jenson JW (2014). Historic impact of watershed change and sedimentation to reefs along west-
Crossref

 

 

Rodgers CS (1990). Response of coral reefs and reef organisms to sedimentation. Mar. Ecol. Prog. Ser. 62:185-202.
Crossref

 

 

Rotmann S, Thomas S (2012). Coral tissue thickness as a bioindicator of mine-related turbidity stress on coral reefs at Lihir Island, Papua New Guinea. Oceanography 25(4):52–63, http://dx.doi.org/10.5670/oceanog.2012.67
Crossref

 

 

Ruiz-Moreno D, Willis BL, Page AC, Weil E, Cróquer A, Vargas-Angel

 

 

Sabater MG, Yap HT (2004). Long-term effects of induced mineral accretion on growth, survival and corallite properties of Porites cylindrica Dana. J. Exp Mar. Biol. Ecol. 311(2):355-374.
Crossref

 

 

Shantz AA, Burkepile DE (2014). Context-dependent effects of nutrient loading on the coral-algal mutualism Ecology 95: 1995-2005.
Crossref

 

 

Todd PA (2008). Morphological plasticity in scleractinean corals. Biol. Rev. 83:315-337.
Crossref

 

 

Todd PA, Sanderson PG, Chou LM (2001). Morphological variation in polyps of the scleractinean coral Favia speciosa (Dana) around Singapore. Hydrobiologia 444: 227-235.
Crossref

 

 

Torres JL, Morelock J (2002). Effect of terrigenous sediment influx on coral cover and linear extension rates in three Caribbean massive coral species. Caribb. J. Sci. 38:222-229.

 

 

Tribollet A, Golubic S (2005). Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years in the northern Great Barrier Reef, Australia. Coral Reefs 24:422-434.
Crossref

 

 

Tribollet A, Decherf G, Hutchings PA, Peyrot-Clausade M (2002). Large-scale spatial variability in bioerosion of experimental coral substrates on the Great Barrier Reef (Australia); importance of microborers. Coral Reefs 21:424-432.

 

 

Van Katwijk MM, Meier NF, Van Loon R, Van Hove EM, Giesen WBJT, Van der Velde G, Den Hartog C (1993). Sabaki River sediment load and coral stress: correlation between sediments and condition of the Malindi-Watamu reefs in Kenya (Indian Ocean). Mar. Biol. 117:675-683.
Crossref

 

 

Veron J (2000). Corals of the World. Australian Institute of Marine Science, Townsville

 

 

Wiedenmann J, D'Angelo C, Smith EG, Hunt AN, Legiret F-E. Postle AD, Achterberg EP (2012) Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 160-164.
Crossref

 

 

Wisshak MC, Schönberg HL, Form A, Freiwald A (2013). Effects of ocean acidification and global warming on reef bioerosion-lessons from a clionaid sponge Aquat. Bio.l 19:111-127.
Crossref

 

 

Wooldridge SA (2014) Assessing coral health and resilience in a warming ocean: Why looks can be deceptive Bioassays DOI 10.1002/bies.201400074.