African Journal of
Agricultural Research

  • Abbreviation: Afr. J. Agric. Res.
  • Language: English
  • ISSN: 1991-637X
  • DOI: 10.5897/AJAR
  • Start Year: 2006
  • Published Articles: 6865

Full Length Research Paper

An optimization model for the combined planning and harvesting of sugarcane with maturity considerations

Romulo Pimentel Ramos
  • Romulo Pimentel Ramos
  • Energy in Agriculture, University of Estadual Paulista/UNESP/FCA - 18618-000- Botucatu, SP - Brazil.
  • Google Scholar
Paulo Roberto Isler
  • Paulo Roberto Isler
  • Energy in Agriculture, University of Estadual Paulista/UNESP/FCA - 18618-000- Botucatu, SP - Brazil.
  • Google Scholar
Helenice de Oliveira Florentino*
  • Helenice de Oliveira Florentino*
  • Department of Biostatistics, University of Estadual Paulista/UNESP/IB - 18618-000 - Botucatu, SP – Brazil.
  • Google Scholar
Dylan Jones
  • Dylan Jones
  • Centre for Operational Research and Logistics, Department of Mathematics, University of Portsmouth, Lion Gate Building – Portsmouth - PO1 3HF – UK.
  • Google Scholar
Jonis Jecks Nervis
  • Jonis Jecks Nervis
  • Energy in Agriculture, University of Estadual Paulista/UNESP/FCA - 18618-000- Botucatu, SP - Brazil.
  • Google Scholar


  •  Received: 15 July 2016
  •  Accepted: 15 September 2016
  •  Published: 06 October 2016

References

Buddadee B, Wirojanagud W, Watts DJ, Pitakaso R (2008). The development of multi-objective optimization model for excess bagasse utilization: A case study for Thailand. Environ. Impact Asses. Rev. 28:380-391.
Crossref

 

Colin EC (2009). Mathematical programming accelerates implementation of agro-industrial sugarcane complex. Eur. J. Oper. Res. 199:232-235.
Crossref

 

Center of Sugarcane Technology (CTC) (2012). Varieties CTC 2012, Brazil. 

 

Florentino HO, Pato MV, Jones D, Cantane DR (2015). Biomass Production and Uses. In: Production and Management of Sugarcane Biomass Process Optimization. InTech. 

View

 

Florentino HO, Pato MV (2014). A bi-objective genetic approach for the selection of sugarcane varieties to comply with environmental and economic requirements. J. Oper. Res. Soc. 65:842-854.
Crossref

 

Higgins AJ, Muchow RC, Rudd AV, Ford AW (1998). Optimising harvest date in sugar production: A case study for the Mossman mill region in Australia I. Development of operations research model and solution. Field crops Res. 57:153-162.
Crossref

 

Holland J (1975). Adaptation in natural and artificial systems. Ann Arbor University of Michigan Press, MI, USA.

 

Holland JH (1992). Adaptation.in natural and artificial systems. MIT Press, MA, USA.

 

Jena SD, Poggi M (2013). Harvest planning in the Brazilian sugar cane industry via mixed integer programming. Eur. J. Oper. Res. 230:374-384.
Crossref

 

Leboreiro J, Hilaly AK (2011). Biomass transportation model and optimum plant size for the production of ethanol. Bioresour. Technol. 102:2712-2723.
Crossref

 

Piewthongngam, K., Pathumnakul, S., Setthanan K. (2009). Application of crop growth simulation and mathematical modeling to supply chain management in the Thai sugar industry. Agric. Syst. 102:58-66.
Crossref

 

RIDESA (2008). Inter-university Network for development of the sugarcane industry. Varieties RB. 

 

Rudorff BFT, Aguiar DA, Silva WF, Sugawara LM, Adami L, Moreira MA (2010). Studies on the Rapid Expansion of Sugarcane for Ethanol Production. in São Paulo State (Brazil) Using Landsat Data. Remote Sens 2:1057-1076.
Crossref

 

Salassi ME, Breaux JB, Naquin CJ (2002). Modeling within-season sugarcane growth for optimal harvest system selection. Agric. Syst. 73:261-278.
Crossref

 

Scarpari MS, Beauclair EGF (2010). Optimized agricultural planning of sugarcane using linear programming. Invest. Oper. 31:126-132.

 

Stray BJ, van Vuuren JH, Bezuidenhout CN (2012). An optimisation-based seasonal sugarcane harvest scheduling decision support system for commercial growers in South Africa. Comput. Electron. Agric. 83:21-31.
Crossref