African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Full Length Research Paper

Glyoxalase I expression pattern in Hevea brasiliensis seedlings under varied stress conditions

Siraj M. V. P
  • Siraj M. V. P
  • Department of Biotechnology and Microbiology, School of Life Sciences, Kannur University Thalassery Campus, Kannur, Kerala, India.
  • Google Scholar
Thulaseedharan, A.
  • Thulaseedharan, A.
  • Advanced Centre for Molecular Biology and Biotechnology, Rubber Research Institute of India, kottayam, Kerala, India.
  • Google Scholar
Anu Augustine
  • Anu Augustine
  • Department of Biotechnology and Microbiology, School of Life Sciences, Kannur University Thalassery Campus, Kannur, Kerala, India.
  • Google Scholar


  •  Received: 07 November 2014
  •  Accepted: 02 December 2015
  •  Published: 16 March 2016

References

Bhomkar P, Upadhyay CP, Saxena M, Muthusamy A, Shiva Prakash N and Sarin N.B (2008). Salt stress alleviation in transgenic Vigna mungo L. Hepper (blackgram) by over expression of the glyoxalase I gene using a novel cestrum yellow leaf curling virus (CmYLCV) promoter. Mol. Breeding. 22:169-181.
Crossref

 

Blomstedt CK, Gianello RD, Hamil JD, Neale AD, Gaff DF (1998). Drought-stimulated genes correlated with desiccation tolerance of the resurrection grass Sporobolus stafianus. Plant Growth Regul. 24:153-161.
Crossref

 
 

Chakravarty T.N and Sopory S.K (1998). Blue light stimulation of cell proliferation and glyoxalase I activity in callus cultures of Amaranthus paniculatus. Plant.Sci. 132:63-69.
Crossref

 
 

Deswal R, Chakravarthy TN, Sopory S.K (1993). The glyoxalase system in higher plant, regulation in growth and differentiation. Biochem.Soc.Trans. 21:527-530.
Crossref

 
 

Espartero J, Sanchez-Aguayo, Pardo J.M (1995). Molecular characterization of glyoxalase I from higher plant: up regulation by stress. Plant Mol. Biol. 29:1223-1233.
Crossref

 
 

Gody JA, Pardo JM, Pintor-Toro JA (1990). A tomato cDNA inducible by salt stress and abscisic acid, nucleotide sequence and expression pattern. Plant.Mol.Biol. 15:695-705.
Crossref

 
 

Hossain MA, Fujita M (2009). Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Biosci.Biotechnol.Biochem. 73(9):2007-2013.
Crossref

 
 

Hossain MA, Hossain MZ, Fujita M (2009). Stress induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aust. J. Crop. Sci. 3: 53-64.

 
 

Lu T, Creighton DJ, Antoine M, Fenselau C, Lovett PS (1994). The gene encoding glyoxalase I from Pseudomonas putida, Cloning, over-expression and sequence comparison with human glyoxalase I. Gene. 150:93-96.
Crossref

 
 

Paulus, C, Kolner B, Jacobsen HJ (1993). Physiological and Biochemical characterization of glyoxalase I, a general marker for cell proliferation, from a soybean cell suspension. Plant 189: 561-566.
Crossref

 
 

Ray S, Dutta S, Martins AMTBS, Cordeiro CAA, Freire AMJP (2001). In-situ analysis of methylglyoxal metabolism in Saccharomyces cerevisiae. FEBS Lett. 499:41-44.
Crossref

 
 

Rhee, HI, Murata, K, Kimura, A (1987). Molecular cloning of the Pseudomonas putida glyoxalase I gene in Escherichia coli. Biochem.Biophys.Res.Commun. 147:831-838.
Crossref

 
 

Ranganathan S, Walsh ES, Godwin AK, Tew KD (1993). Cloning and Characterization of human colon glyoxalase I. J.Biol.Chem. 268: 5661-5667.

 
 

Romo S, Labrador E, Dopico B (1998). Isolation and Characterization of a cDNA encoding a Glyoxalase-I from Cicer arietinum L. Epicotyls up-regulated by stress. Plant Physiol. 117:331.

 
 

Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001). Monitoring the expression pattern of 1300 Arabidopsis Genes under Drought and Cold stresses by using a Full-Length cDNA Microarray. Plant Cell. 13: 61-72.
Crossref

 
 

Singla-Pareek SL, Reddy MK, Sopory SK (2003). Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc. Natl. Acad. Sci. U.S.A. 100:14672-14677.
Crossref

 
 

Thornalley PJ (1996). Pharmacology of methylglyoxal; formation, modification of proteins and nucleic acids and enzymatic detoxification a role in pathogenesis and antiproliferative chemotherapy. Gen. Pharmacol. 27:565-573.
Crossref

 
 

Umeda M, Hara C, Matasubayashi Y, Li H-H, Liu Q, Tadokoro F, Aotsuka S, Uchimiya H (1994). Expressed sequence tag from cultured cells of rice (Oryza sativa L.) under stressed conditions, analysis of transcripts of genes engaged in ATP-generating pathways. Plant. Mol. Biol. 26: 541-546.
Crossref

 
 

Veena, Vanga SR, Sudhir KS (1999). Glyoxalase I from Brassica juncea, Molecular cloning, regulation and its expression confer tolerance in transgenic tobacco under stress. Plant. J. 17: 385-395.
Crossref

 
 

Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005). Methylglyoxal levels in plants under salinity are dependent on glyoxalase I and glutathione. Biochem. Biophys. Res. Commun. 337:61-67.
Crossref