African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12486

Full Length Research Paper

Physicochemical, spectroscopic and tableting properties of microcrystalline cellulose obtained from the African breadfruit seed hulls

Nwajiobi C. C.
  • Nwajiobi C. C.
  • Department of Pure and Industrial Chemistry, University of Port Harcourt, Rivers State, Nigeria.
  • Google Scholar
Otaigbe J. O. E.
  • Otaigbe J. O. E.
  • Department of Pure and Industrial Chemistry, University of Port Harcourt, Rivers State, Nigeria.
  • Google Scholar
Oriji O.
  • Oriji O.
  • Department of Pure and Industrial Chemistry, University of Port Harcourt, Rivers State, Nigeria.
  • Google Scholar


  •  Received: 05 March 2019
  •  Accepted: 09 April 2019
  •  Published: 01 May 2019

References

Abdul Khali HPS, Lai TK, Tye YY, Paridah MT, Fazita NMR, Azniwati AA, Dungani R, Rizal S (2018). Preparation and characterization of microcrystalline cellulose from sacred bali-bamboo as reinforcing filler in seaweed-based composite film. Fibrer and Polymers 19(2):423-434.
Crossref

 

Achor M, Oyeniyi YJ, Yahaya A (2014). Extraction and characterization of microcrystalline cellulose obtained from the back of the fruit of Lageriana siceraria (water gourd). Journal of Applied Pharmaceutical Science 4(1):57-60.

 
 

Adel AM, El-Wahab ZHA, Ibrahim AA, Al-Shemy MT (2011). Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: physicochemical properties. Carbohydrate Polymers 83(2):676-687.
Crossref

 
 

Annonymous (1993). British Pharmacopoeia. HMSO Press, London, vol 1,p 53

 
 

Annonymous (2009). British Pharmacopoeia. Volume 11. Her Majesty Stationery Office, University Press Cambridge. pp A366-A327.

 
 

Atuanya CU, Aigbodion VS, Nwigbo U(2012). Characterization of breadfruit seed hull ash for potential utilization in metal matrix composites for automotive application. Peoples Journal of Science and Technology 2(1):2249-5847.

 
 

Azubuike CP, Okhamafe OA (2012). Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. International Journal of Recycling of organic waste in Agriculture 1:9.
Crossref

 
 

Baehr M, Fuhrer C, Puls P (1991). Molecular weight distribution, hemicellulose content and batch conformity of pharmaceutical cellulose powders. European Journal of Pharmaceutics and Biopharmaceutics 37(3):136-141.

 
 

Bakre LG, Ajala OJ (2012). Preliminary physicochemical characterisation of powdered Zea Mays' husk, silk and cellulose derived from Zea mays husk. Nigerian Journal of Pharmaceutical Science 11(2):21-30.

 
 

Beg M, Rosli M, Ramli R, Junadi N (2015). Microcrystalline cellulose (MCC) from oil palm empty fruit bunch (EFB) fiber via simultaneous ultrasonic and alkali treatment. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering 9(1):8-11.

 
 

Bhimte NA, Tayade PT (2007). Evaluation of microcrystalline cellulose prepared from sisal fibers as atablet excipieint: A technical note. Journal of the American Association of Pharmaceutical Scientists 8(1):E1-E7.
Crossref

 
 

Collazo-Bigliardi S, Otega-Toro R, Chiralt BA (2018). Isolation and characterization of microcrystalline and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydrate Polymers 191:205-215.
Crossref

 
 

Ejikeme PM (2008). Investigation of the physicochemical properties of microcrystalline cellulose from agricultural wastes orange mesocarp. Cellulose 15(1):141-147.
Crossref

 
 

Ejiofor MAN, Obianuju OR, Okafor JC (1988). Diversifying of African breadfruit as food and feeding stuff. International Tree Crops Journal 5(3):125-134.
Crossref

 
 

Emenonye AG (2016): Extent of processing effect on the proximate and mineral composition of African Breadfruit (Treculiaafricana) seed. International Journal of Science and Technology 4(4):6-10.

 
 

Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011). Nanostructure of cellulose microfibrils in spruce wood. Proceedings of the National Academy of Sciences of the United States of America 108(470):195-1203.
Crossref

 
 

Fowler HW (2000). Powder flow and compaction. In: Carter S. J (ed) Cooper and Gunn's tutorial pharmacy, 6th ed. CBS Publishers, Delhi.

 
 

Gbenga BL, Fatimah OK (2014). Investigation of α-cellulose content of sugarcane scrappings and Baggase as tablet disintegrant. Journal of Basic and Applied Science 10:142-148.
Crossref

 
 

Haafiz MK, Eichhorn SJ, Hassan AM, Jawaid M (2013). Isolation and characteristaion of microcrystalline from oil palm biomass residue. Carbohydrate Polymers 93(2):628-634.
Crossref

 
 

Hanna M, Blby G, Miladinove V (2001). Production of microcrystalline cellulose by reactive extrusion, US Patent 6, 228 ,213.

 
 

Isah AB, Olorunsola EO, Zaman YE (2012). Physicochemical properties of Borassumacthiopum starch. Asian Journal Pharmaceutical and Clinical Research 5(3):132-134.

 
 

Johar N, Ahmad I, Dufresne A (2012). Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products 37(1):93-99.
Crossref

 
 

Kalita RD, Nath Y, Ochubiojo ME, Buragohain AK (2013). Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids and Surfaces B: Biointerfaces 108:85-89.
Crossref

 
 

Klemm D, Heublein B, Fink HP, Bohn A (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition 44(22):3358-3393.
Crossref

 
 

Kornblum SS, Stoopak SB (1973). A new tablet disintegrant agent: cross linked polyvinylpyrollidone. Journal of Pharmaceutical Science 62(1):43-49.
Crossref

 
 

Lanz M (2006). Pharmaceutical powder Technology: Towards a science based understanding of the behavior of powder system. Inaugural dissertation pp 13-31

 
 

Lau KK, Jawaid M, Ariffin (2017). Isolation and characterization of microcrystalline cellulose from roselle fibers. International Journal of Biological Macromolecules 103:931-940.
Crossref

 
 

Lee SY, Mohan DJ, Kang In A, Doh GH, Lee S, Han SO (2009). Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading. Fibers and Polymers 10(1):77-82.
Crossref

 
 

Liu Y, Liu A, Ibrahim SA, Yang H, Huang W (2018). Isolation and characterization of microcrystalline cellulose from pomelo peel. International Journal of Biological Macromolecule 111:717-721.
Crossref

 
 

Mandal A, Chakrabarty D (2011). Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers 86(3):1291-1299.
Crossref

 
 

Mathew AP, Oksman K, Sain M (2006). The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. Journal of Applied Polymer Science, 101(1):300-310.
Crossref

 
 

Mohammed BB, Isah AB, Ibrahim MA (2009). Influence of compaction pressures on modified cassava starch as a binder in paracetamol tablet formulation. Nigerian Journal of Pharmaceutical Science 8(1):80-88.

 
 

Mood SH, Golfeshan HH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Mehdi Ardjmand M (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews 27:77-93.
Crossref

 
 

Musiliu A, Essien G, Uwah TO, Umoh R, Inibong J, Jackson C (2014). Evaluation of the release properties of microcrystalline cellulose derived from SaccharumOfficinarum L. in paracetamol Tablet formulation. Journal of Pharmaceutical Sciences and Research 6(10):342-346.

 
 

Nishiyama Y (2009). Structure and properties of the cellulose microfibril. Journal of wood Science 55(4):241-249.
Crossref

 
 

Nuruddin M, Chowdhury A, Haque SA, Rahman MM, Farhad SF, Sarwar Jahan M, Quaiyyum A (2011). Extraction and characterization of cellulose microfibrils from agricultural wastes in an integrated biorefinery initiative. Cellulose Chemistry and Technology 45(5-6):347-354.

 
 

Nwadiogbu JO, Igwe AA, Okoye NH, Chime CC (2015). Extraction and Characterisation of microcrystalline cellulose from mango kernel: A waste management approach. Der Pharma Chemica 7(11):1-7.

 
 

Nwajiobi CC, Otaigbe JOE, Oriji O (2018). A comparative study of microcrystalline cellulose isolated from the pod husk and stalk of fluted pumpkin. Chemical Science International Journal 25(4):1-11.
Crossref

 
 

Ofoefule SI (2006). Textbook of pharmaceutical technology and Industrial Pharmacy, Sam-Akin Nigeria Enterprises, Lagos, pp.24-68.

 
 

Ogbonna O, Omotoso AE, Nwaneli Christiana N (2016): Production, Characterisation and Evaluation of Tablets obtained from microcrystalline cellulose Obtained from Pennisetum purpureum.

 
 

Academia Journal of Biotechnology 4(9):319-324.

 
 

Ohwoavworhua FO, Adelakun TA (2005). Some physical characteristics microcrystalline cellulose obtained from raw cotton Cochlospermum planchonii. Tropical Journal of Pharmaceutical Research 4(2):501-507.
Crossref

 
 

Ohwoavworhua FO, Adelakun TA (2010). Non-wood fibre production of microcrystalline cellulose from Sorghum caudatum: Characterization and tableting properties. Indian Journal of Pharmaceutical Sciences 72(3):295-301
Crossref

 
 

Ohwoavworhua FO, Ogah E, Kunle OO (2005). Preliminary investigation of physicochemical and functional properties of alpha cellulose obtained from waste paper-A potential pharmaceutical Excipient. Journal of Raw Materials Research 2:84-93.

 
 

Ohwoavworhua FO, Kunle OO, Ofoefule SI (2004): Extraction and characterization of microcrystalline cellulose derived from Luffa cylindricalplant. African Journal of Pharmaceutical Research and Development (1):1-6.

 
 

Okhamafe AO, Ejike EN, Akinrinola FF, Ubane-Ine D (1995). Aspect of tablet disintegrant properties of cellulose derived from Bagasse and maize cob. Journal of Pharmaceutical Science 1:20-29.

 
 

Okhamafe AO, Igboechi A, Obaseki TO (1991). Celluloses extracted from groundnut shell and rice husks 1. Preliminary Physicochemical characterization. Pharmacy World Journal 8(4):120-130.

 
 

Okonkwo EU, Ubani ON (2007). Indigenous technologies for the dehulling, storage and utilization of breadfruit seeds Artocarpus altilis (Park) Fosb. (Treculia AfricanaDecne) Family: Moraceae in Anambra state. Journal of Agricultural Research 4(1):27-30.

 
 

Olorunsola EO, Bhatia PG, Tytler BA, Adikwu MU (2016). Hydration and swelling dynamics of some tropical hydrophilic polymers. Nigerian Journal of Pharmaceutical Science 15(1):41-47.
Crossref

 
 

Oluwasina O, Lajide L, Owolabi B (2014). Microcrystalline cellulose from plant wastes through Sodium hydroxide-Anthraquinone-Ethanol pulping. Bioresources 9(4):6166-6192.
Crossref

 
 

Pachuau L, Mali C, Ramdinsangi H, Nirmal KN (2014). Physicochemical and functional characterization of microcrystalline cellulose from bamboo (Dendrocalamus longispathus). International Journal of Pharmtech Research 5(4):1561-1571.

 
 

Pachau L, Vanlalfakawma DC, Tripathi SK (2014). Muli bamboo (Melocanna baccifera) as a new source of microcrystalline cellulose. Journal of Applied Pharmaceutical Science 4(11):087-094..

 
 

Raveendran K, Ganesh A, Khilar KC (1995). Influence of mineral matter on biomass pyrolysis characteristics. Fuel 74(12):1812-1822.
Crossref

 
 

Rosa SML, Rehman N, De Miranda MIG, Nachtigall SMB, Bica ClD (2012). Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydrate Polymers 87(2):1131-1138.
Crossref

 
 

Rosnah MS, Astimar AB, Wan Hasamudin WH, Gapor AMT (2009). Solid-state characteristics of microcrystalline cellulose from oil palm empty fruit bunch fibre. Journal of Oil Palm Research 21:613-620.

 
 

Rubinstein ME (1996). Tablet, In: Pharmaceutics- the science of dosage form design (EDME Aulton), Churchill Livingston 600-615.

 
 

Shanmugam N, Nagarkar RD, Kurhade M (2014). Microcrystalline cellulose powder from banana pseudostem fibres using biochemical route. Indian Journal of Natural Products and Resources 6(1):42-50.

 
 

Stamm AF(1964). Wood and Cellulose Science. The Ronald Press Company, New York, pp. 132-165.

 
 

Sumaiyah, Basuki W, Karsono (2016). Utilization of microcrystalline cellulose of sugar palm bunches (Arengapinnata (Wurmb) maerr.) as Excipients Tablet compression. International Journal of Pharmtechnology Research 9(7):130-139.

 
 

Qian Y, Qin Z, Vu NM, Guolin T, Frank Chin YC (2012). Comparison of nanocrystals from tempo oxidation of bamboo, softwood, and cotton linter fibers with ultrasonic-assisted process. Bioresources 7(4):4952-4964.
Crossref

 
 

Nwabueze TU, Otunwa U (2006). Effect of supplementation of African breadfruit (Treculia africana) hulls with organic wastes on growth characteristics of Saccharomyces cerevisiae, African Journal of Biotechnology 5(16):1494-1498.

 
 

Umeh ONC, Nworah AC, Ofoefule SI (2014). Physico-chemical properties of Microcrystalline cellulose derived from Indian Bamboo (Bambusa vulgaris). International Journal of Pharmaceutical Sciences Review and Research 29(2):5-9.

 
 

Vora RS, Shah YD (2015): Production of microcrystalline cellulose from corn husk and its evaluation as Pharmaceutical Excipient. International Journal of Research and Scientific Innovation 2(11):69-74.

 
 
Wu JS, Ho HO, Sheu MT (2011). A statistical design to evaluate the influence of manufacturing factors on the material properties and functionalities of microcrystalline cellulose. European Journal of Pharmaceutical Science 12(4):417-425.
 
 

Yusrina RRRK, Sutriyo, Suryadi H (2018). Preparation and characterization of microcrysytlline cellulose produced from Betung Bambo (Dendrocalamus asper) through Acid Hydrolysis. Journal of Young Pharmacists 10 (2): S79-S83
Crossref

 
 

Zhbankov RG (1962). Infra red spectra of cellulose and its derivatives. Science and Technic, p 333.