African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Full Length Research Paper

Optimization of alkaline protease production and its fibrinolytic activity from the bacterium Pseudomonas fluorescens isolated from fish waste discharged soil

Jothiprakasam Vinoth*,
  • Jothiprakasam Vinoth*,
  • CAS in Marine Biology, Annamalai University, Parangipettai-608 502, Tamil Nadu, India.
  • Google Scholar
Sambantham Murugan
  • Sambantham Murugan
  • CAS in Marine Biology, Annamalai University, Parangipettai-608 502, Tamil Nadu, India.
  • Google Scholar
Chinnathambi Stalin
  • Chinnathambi Stalin
  • CAS in Marine Biology, Annamalai University, Parangipettai-608 502, Tamil Nadu, India.
  • Google Scholar


  •  Received: 16 April 2014
  •  Accepted: 04 July 2014
  •  Published: 23 July 2014

References

Adinarayana K, Ellaiah P, Prasad DS (2003). Purification and partial characterization of thermo stable serine alkaline protease from a newly isolated Bacillus subtilis PE-11. AAPS Pharm. Sci. Technol. 4(4): 440-448.
Crossref
 
Balaji N, Rajasekaran KM, Kanipandian N, Vignesh V, Thirumurugan R (2012). Isolation and screening of proteolytic bacteria from freshwater fish Cyprinus carpio. Int. Multidiscip. Res. J. 2(6): 56-59.
 
Beg QK, Sahai V, Gupta R (2003). Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process. Biochem. 39(2): 203-209.
Crossref
 
Bhattacharya S, Bhardwaj S, Das A, Anand S (2011). Utilization of sugarcane bagasse for solid- state fermentation and characterization of α- amylase From Aspergillus flavus isolated from Muthupettai Mangrove, Tamil Nadu, India. Aust. J. Basic. Appl. Sci. 5(12): 1012-1022.
 
Borriss R (1987). Biology of enzymes. In: Biotechnology (Rehm H and Reed G. Ed). Weinheim, Verlag Chemie 35-62.
 
Dalev PG (1994). Utilization of waste feather from poultry slaughter for production of protein concentrate. Bioresour. Technol. 48: 265-267.
Crossref
 
Deng A, WU J, Zhang Y, Zhang G, Wen T (2010). Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp. B001. Bioresour. Technol. 101(18): 7100-7116.
Crossref
 
Elibol M, Antouio R, Moreira (2005). Optimizing some factors affecting alkaline protease production b a marine bacterium Terclinobacter turbirae under solid substrate fermentation. Process. Biochem. 40: 1951-1956.
Crossref
 
Fujiwara N, Yamamoto K (1987). Production of alkaline protease in a low cost medium by alkalophutlic Bacillus sp. and properties of the enzymes. J. Ferment. Technol. 65: 345-348.
Crossref
 
Gaustevora A, Braikova D, Christov P, Tishinov K, Vasileva Tonkova E, Haertle T, Nedkov P (2005). Degradation of keratin and collagen containing wastes by newly isolated. Thermnoactivomycetes or by alkaline hydrolysis. Lett. Appl. Microbiol. 40: 335-340.
Crossref
 
Harrigan WF, Mc-Cance ME (1966). Laboratory methods in Microbiology, Academic Press, New York. pp. 55-68.
 
Howell CR, Stipanovic RD (1979). Control of Rhizoctonia solani in cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480–482.
Crossref
 
Howell CR, Stipanovic RD (1980). Suppression of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology 70:712–715.
Crossref
 
Ibrahim ASS, Al-Salamah AA (2009). Optimization of media and cultivation conditions for alkaline protease production by alkaliphilic Bacillus halodurans. Res. J. Microbiol. 4(7): 251-259.
Crossref
 
Jellouli K, Bougatef A, Manni L, Agrebi R, Siala R, Younes I, Nasri M (2009). Molecular and biochemical characterization of an extracellular serine-protease from Vibrio etschnikovii J1. J. Ind. Microbiol. Biotechnol. 36:939-948.
Crossref
 
Josephine FS, Ramya VS, Devi N, Ganapa SB, Siddalingeshwara KG, Venugopal N, Vishwanatha T (2102). Isolation, production and characterization of protease from Bacillus sp. isolated from soil sample. J. Microbiol. Biotechnol. Res. 2:163-168.
 
Kalaiarasi K, Sunitha PU (2009). Optimization of alkaline protease production from Pseudomonas fluorescens isolated from meat waste contaminated soil. Afr. J. Biotechnol. 8:7035-7041.
 
Kannan N (2002). Hand book of laboratory culture media, reagents, stains and buffers, Pahima Publishing Corporation, Bangalore, p. 101.
 
Kumar A, Sachdev A, Balasubramanyam SD, Saxena AK, Lata A (2002). Optimization of conditions for production of neutral and alkaline protease from species of Bacillus and Pseudomonas. Ind. J. Microbiol. 42: 233-236.
 
Kumar DJM, Venkatachalam P, Govindarajan N, Balakumaran MD, Kalaichelvan PT (2012). Production and purification of alkaline protease from Bacillus sp. MPTK 712 isolated from dairy sludge. Glob. Vet. 8: 433-439.
 
Kumar GA, Nagesh N, Prabhakar TG, Sekharan G (2008). Purification of extracellular acid protease and analysis of fermentation metabolites by Synergistes sp. utilizing proteinaceous solid waste from tanneries. Bioresour. Technol. 99: 2364-2372.
Crossref
 
Law BA, Andrews AT, Sharpe ME (1977). Gelation of UHT sterilized milk by proteases from a strain of Pseudomonas fluorescens isolated from raw milk. J. Dairy Res. 44:145-178.
Crossref
 
Mala M, Srividya S (2010). Partial purification and properties of a laundry detergent compatible alkaline protease from a newly isolated Bacillus species Y. Ind. J. Microbiol. 50: 309-317.
 
Martin FN, Loper JE (1999). Soilborne plant diseases caused by Pythium spp.: ecology, epidemiology, and prospects for biological control. Crit. Rev. Plant Sci. 18:111–181.
Crossref
 
Maurhofer M, Keel C, Haas D, De’fago G(1994). Pyoluteorin production by Pseudomonas fluorescens strain CHA0 is involved in the sup- pression of Pythium damping-off of cress but not of cucumber. Eur. J. Plant Pathol. 100:221–232.
Crossref
 
Naidu KSB, Devi KL (2005). Optimization of thermo stable alkaline protease production from species of Bacillus using rice bran. J. Biotechnol. 4: 724-726.
 
Nowak-Thompson B, Gould SJ, Kraus J, Loper JE (1994). Production of 2,4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Can. J. Microbiol. 40:1064–1066.
Crossref
 
Patil U, Chaudhari A (2011). Optimal production of alkaline protease from solvent- tolerant alkalophilic Pseudomonas aeruginosa MTCC 7926. Ind. J. Biotechnol 10: 329-339.
 
Qadar SAU, Shireen E, Iqbal S, Anwar A (2009). Optimization of protease production from newly isolated strain of Bacillus sp. PCSIR EA-3. Ind. J. Biotechnol. 8: 286-290.
 
Radha S, Nithya VJ, Himakiran R Babu, Sridevi A, Prasad NBL, Narasimha B (2011). Production and optimization of acid protease by Aspergillus sp under submerged fermentation. Arch. Appl. Sci. Res. 3: 155-163.
 
Rahman RN, Geok LP, Basri M, Salleh AB (2005). Physical factors affecting the production of organic solvent-tolerant protease by Pseudomonas aeruginosa strain K. Bioresour. Technol. 96: 429-436.
Crossref
 
Samanta A, Pal P, Mandal A, Sinha C, Lalee A, Das M, Kaity S, Mitra D (2012). Estimation of biosurfactant activity of an alkaline protease producing bacteria isolated from municipal solid waste. Cent. Eur. J. Exp. Biol. 1: 26-35.
 
Shanthakumari AR, Nagalakshmi R, Ramesh S (2010). Scale-up and media optimization of protease by Vibrio alginolyticus. J. Ecobiotechnol. 2: 17-25.
 
Shivakumar S (2012). Co-production of alkaline protease and amylase of Bacillus sp Y in solid state cultivations. Res. J. Biotechnol. 7: 32-38.
 
Sinha N, Satyanarayana T (1999). Alkaline protease production by thermopile Bacillus licheniformis. Enzyme Microbiol. Technol 8: 370-372.
 
Smita GS, Ray P, Mohapatra S (2012). Quantification and optimization of bacterial isolates for production of alkaline protease. Asian. J. Exp. Biol. Sci. 3:180-186.
 
Steel, RGD, Torrie JH, Dickey DA (1997). Principles and Procedures of Statistics - a Biometrical Approach. 3rd Ed. McGraw-Hill, New York.
 
Sudharshan RK, Dutt L, Nayyar R (2007). A highly thermo stable and alkaline amylase from a Bacillus. sp. PN5. Bioresour. Technol. 21: 25-29.
 
Thomashow L, Weller D (1995). Current concepts in the use of introduced bacteria for biological control: mechanisms and antifungal metabolites, In. G. Stacey and N. T. Keen (ed.), Plant-microbe interactions. Chapman and Hall, New York, N.Y. 187–235.
 
Uyar F, Baysal Z (2004). Production and optimization of process parameters for alkaline protease production by a newly isolated. Process. Biochem. 39: 1893-1898.
Crossref
 
Vadlamani S, Parcha SR (2011). Studies on industrially important alkaline protease production from locally isolated superior microbial strain from soil microorganisms. Int. J. Biotechnol. Appl. 3: 102-105.
 
Wang HT, Hsu J (2005). Optimal protease production condition for Prevotella ruminicola 23 and characterization of its extra cellular crude protease. Anaerobe 11: 155-162.
Crossref
 
Wang SL, Yang CH, Liang TW, Yen YH (2008). Optimization of conditions for protease production by Chryseobacterium taeanense Thu001. Bioresour. Technol. 99: 3700-3707.
Crossref