African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Full Length Research Paper

Yield coefficient for the growth of Pseudomonas sp. AQ5-04 at various concentrations of phenol

Aisami A.
  • Aisami A.
  • Department of Biochemistry, Faculty of Sciences, Gombe State University, P. M. B. 027, Gombe, Nigeria.
  • Google Scholar
Usman M.M.
  • Usman M.M.
  • Department of Biotechnology, School of Life Science, Modibbo Adama University of Technology, Yola, Nigeria.
  • Google Scholar
Siddan A.A.
  • Siddan A.A.
  • Department of Biochemistry, Faculty of Sciences, Gombe State University, P. M. B. 027, Gombe, Nigeria.
  • Google Scholar
Ramlatu M.A.
  • Ramlatu M.A.
  • Department of Biochemistry, Faculty of Sciences, Gombe State University, P. M. B. 027, Gombe, Nigeria.
  • Google Scholar
James I.J.
  • James I.J.
  • Department of Biochemistry, Faculty of Sciences, Gombe State University, P. M. B. 027, Gombe, Nigeria.
  • Google Scholar
Garba L.
  • Garba L.
  • Department of Microbiology, Faculty of Science, Gombe State University, P. M. B. 027, Gombe, Nigeria.
  • Google Scholar
Yasid N.A.
  • Yasid N.A.
  • Department of Biochemistry, Faculty of Biotechnology and Bimolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Google Scholar
Shukor M.Y.
  • Shukor M.Y.
  • Department of Biochemistry, Faculty of Biotechnology and Bimolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Google Scholar


  •  Received: 19 February 2020
  •  Accepted: 20 March 2020
  •  Published: 31 July 2020

References

AbdEl-Mongy MA, Shukor MS, Hussein S, Ling APK, Shamaan NA, Shukor MY (2015). Isolation and characterization of a molybdenum-reducing, phenol- and catechol-degrading Pseudomonas putida strain amr-12 in soils from Egypt. Scientific Study and Research Chemistry and Chemical Engineering, Biotechnology, Food Industry 16:353-369.

 

Abdelwahab O, Amin NK, El-Ashtoukhy ESZ (2009). Electrochemical removal of phenol from oil refinery wastewater. Journal of Hazardous Materials 163:711-716. 
Crossref

 
 

Abuhamed T, Bayraktar E, Mehmetoǧlu T, Mehmetoǧlu Ü (2004). Kinetics model for the growth of Pseudomonas putida F1 during benzene, toluene and phenol biodegradation. Process Biochemistry 39:983-988.
Crossref

 
 

Agarry SE, Solomon BO, Layokun SK (2008). Optimization of process variables for the microbial degradation of phenol by Pseudomonas aeruginosa using response surface methodology. African Journal of Biotechnology 7:2409-2416.

 
 

Ahmad SA, Shamaan NA, Arif NM, Koon GB, Shukor MYA, Syed MA (2012). Enhanced phenol degradation by immobilized Acinetobacter sp. strain AQ5NOL 1. World Journal of Microbiology and Biotechnology 28:347-352. 
Crossref

 
 

Ahmad SA, Shamaan NA, Syed MA, Khalid A, Rahman NAA, Khalil KA, Dahalan FA, Shukor MY (2017). Meta-cleavage pathway of phenol degradation by Acinetobacter sp. strain AQ5NOL 1. Rendiconti Lincei 28:1-9. 
Crossref

 
 

Ahmad SA, Syed MA, Arif NM, Shukor MYA, Shamaan NA (2011). Isolation, identification and characterization of elevated phenol degrading Acinetobacter sp. strain AQ5NOL 1. Australian Journal of Basic and Applied Sciences 5:1035-1045.
Crossref

 
 

Ahmad SA, Syed MA, Arif NM, Yunus M, Shukor A, Shamaan A (2011). Isolation , Identification and Characterization of Elevated Phenol Degrading Acinetobacter sp. Strain AQ5NOL 1. Australian Journal of Basic and Applied Sciences 5:1035-1045.
Crossref

 
 

Aisami A (2017). Biodegradation of Phenol by Free and Immobilised Cells of Locally-Isolated Bacteria. Universiti Putra Malaysia, pp. 10-70.

 
 

Akbal F, Onar AN (2003). Photocatalytic degradation of phenol. Environmental Monitoring and Assessment 83:295-302. 
Crossref

 
 

Alkaram UF, Mukhlis AA, Al-Dujaili AH (2009). The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. Journal of Hazardous Materials 169:324-332.
Crossref

 
 

Anuar N (2013). Development of aerobic granular sludge for sewage treatment in a hot climate. Journal of Biochemistry, Microbiology and Biotechnology 1:1-6.

 
 

Arif NM, Ahmad SA, Syed MA, Shukor MY (2013). Isolation and characterization of a phenol-degrading Rhodococcus sp. strain AQ5NOL 2 KCTC 11961BP. Journal of Basic Microbiology 53:9-19. 
Crossref

 
 

Bakhshi Z, Najafpour G, Kariminezhad E, Pishgar R, Mousavi N, Taghizade T (2011). Growth kinetic models for phenol biodegradation in a batch culture of Pseudomonas putida. Environmental Technology 33(15-16):1835-1841. 
Crossref

 
 

Basak B, Bhunia B, Dutta S, Chakraborty S, Dey A (2014). Kinetics of phenol biodegradation at high concentration by a metabolically versatile isolated yeast Candida tropicalis PHB5. Environmental Science and Pollution Research 21:1444-1454.
Crossref

 
 

Chi C, Howell JA (1976) Transient behavior of a continuous stirred tank biological reactor utilizing phenol as an inhibitory substrate. Biotechnology and Bioengineering 18:63-80.
Crossref

 
 

Das M, Maiti SK (2007) Metal mine waste and phytoremediation: A review. Asian Journal of Water, Environment and Pollution 4:169-176.

 
 

Department of Environmental (DOE) (2014) Malaysia Environmental Quality Report 2014. Department of Environment, Ministry of Natural Resources and Environment Malaysia, (Publication Section Strategic Communication Division, Department of Environment Malaysia)

 
 

Gami AA, Shukor MY, Khalil KA, Dahalan FA, Khalid A, Ahmad SA (2014a). Phenol and its toxicity. Journal of Environmental Microbiology and Toxicology 2:11-24.

 
 

Gami AA, Shukor MY, Khalil KA, Dahalan FA, Khalid A, Ahmad SA (2014b). Phenol and its toxicity. Journal of Environmental Microbiology and Toxicology 2:11-23.

 
 

Ghazali FM, Johari WLW (2015). The occurrence and analysis of bisphenol A (BPA) in environmental samples - A review. Journal of Biochemistry, Microbiology and Biotechnology 3:30-38.

 
 

Hank D, Saidani N, Namane A, Hellal A (2010). Batch Phenol Biodegradation Study and Application of Factorial Experimental Design. Journal of Engineering Science and Technology Review 3(1):123-127.
Crossref

 
 

Hirooka T, Akiyama Y, Tsuji N, Nakamura T, Nagase H, Hirata K, Miyamoto K (2003). Removal of hazardous phenols by microalgae under photoautotrophic conditions. Journal of Bioscience and Bioengineering 95:200-203. 
Crossref

 
 

Hutchinson DH, Robinson CW (1988). Kinetics of the simultaneous batch degradation of p-cresol and phenol by Pseudomonas putida. Applied Microbiology and Biotechnology 29:599-604. 
Crossref

 
 

Jiang Y, Wen J, Bai J, Jia X, Hu Z (2007). Biodegradation of phenol at high initial concentration by Alcaligenes faecalis. Journal of Hazardous Materials 147:672-676. 
Crossref

 
 

Kulkarni SJ, Kaware JP (2013). Review on Research for Removal of Phenol from wastewater. International Journal of Scientific and Research Publications 3:1-5.

 
 

Kumar A, Kumar S, Kumar S (2005). Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochemical Engineering Journal 22:151-159. 
Crossref

 
 

Li Y, Li J, Wang C, Wang P (2010). Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1. Bioresource Technology 101:6740-6744. 
Crossref

 
 

Liotta LF, Gruttadauria M, Di Carlo G, Perrini G, Librando V (2009) Heterogeneous catalytic degradation of phenolic substrates: Catalysts activity. Journal of Hazardous Materials 162:588-606. 
Crossref

 
 

Luo ZH, Pang KL, Gu JD, Chow RKK, Vrijmoed LLP (2009). Degradability of the three dimethyl phthalate isomer esters (DMPEs) by a Fusarium species isolated from mangrove sediment. Marine Pollution Bulletin 58:765-768. 
Crossref

 
 

Luo ZH, Pang KL, Wu YR, Gu JD, Chow RK, Vrijmoed LLP (2012). Degradation of phthalate esters by Fusarium sp. DMT-5-3 and Trichosporon sp. DMI-5-1 isolated from mangrove sediments. In The Biology of Marine Fungi, pp. 299-328. (Springer).
Crossref

 
 

Maiti SK, Mannan SM (1999). Treatment of synthetic phenolic was through anaerobic filter technology. Indian Journal of Environmental Protection 19:422-426.

 
 

Mohanty SS, Jena HM (2017). Biodegradation of phenol by free and immobilized cells of a novel Pseudomonas sp. NBM11. Brazilian Journal of Chemical Engineering 34(1):75-84.
Crossref

 
 

Monteiro ÁAMG, Boaventura RAR, Rodrigues AE (2000). Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor. Biochemical Engineering Journal 6:45-49. 
Crossref

 
 

Norazah MN, Jayasree N, Ahmad SA, Shukor MY, Abdul Latif I (2015). Disrupting Rhodococcus sp: A competent method for genomics and proteomics. Journal of Chemical and Pharmaceutical Sciences 8:336-341.

 
 

Nordin N, Zakaria MR, Halmi MIE, Ariff A, Zawawi RM, Wasoh H (2013). Isolation and screening of high efficiency biosurfactant-producing Pseudomonas sp. Journal of Biochemistry. Microbiology and Biotechnology 1:25-31.

 
 

Onysko KA, Budman HM, Robinson CW (2000) Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida Q5. Biotechnology and Bioengineering 70:291-299.
Crossref

 
 

Reardon KF, Mosteller DC, Bull Rogers JD (2000). Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnology and Bioengineering 69:385-400.
Crossref

 
 

Sabullah MK, Rahman MF, Ahmad SA, Sulaiman MR, Shukor MS, Gansau AJ, Shamaan NA, Shukor MY (2017). Isolation and characterization of a molybdenum-reducing and phenolic- and catechol-degrading Enterobacter sp. strain saw-2. BIOTROPIA - The Southeast Asian Journal of Tropical Biology 24:47-58. 
Crossref

 
 

Senthilvelan T, Kanagaraj J, Panda RC, Mandal AB (2014). Biodegradation of phenol by mixed microbial culture: an eco-friendly approach for the pollution reduction. Clean Technologies and Environmental Policy 16:113-126. 
Crossref

 
 

Szczyrba E, Szczotka A, Bartelmus G (2016). Modelling of aerobic biodegradation of phenol by Stenotrophomonas maltophilia KB2 strain. Proceedings of ECOpole 10:533-543.

 
 

Taweel A, Shuhaimi-Othman M, Ahmad AK (2013). Assessment of heavy metals in tilapia fish (Oreochromis niloticus) from the Langat River and Engineering Lake in Bangi, Malaysia, and evaluation of the health risk from tilapia consumption. Ecotoxicology and Environmental Safety 93:45-51.
Crossref

 
 

Wang SJ, Loh KC (1999) Modeling the role of metabolic intermediates in kinetics of phenol biodegradation. Enzyme and Microbial Technology 25:177-184. 
Crossref

 
 

Wolski EA, Durruty I, Haure PM, González JF (2012). Penicillium chrysogenum: phenol degradation abilities and kinetic model. Water, Air and Soil Pollution 223:2323-2332.
Crossref

 
 

Yusof MA, Hasan N, Abdullah MP (2002). River water quality in Langat basin, Selangor, Malaysia. Malaysian Journal of Environmental Management 3:125-142.

 
 

Zhang Y, Lu D, Ju T, Wang L, Lin S, Zhao Y, Wang C, He H, Du Y, others (2013). Biodegradation of phenol using Bacillus cereus WJ1 and evaluation of degradation efficiency based on a graphene-modified electrode. International Journal of Electrochemical Science 8:504-519.

 
 

Zulkharnain A, Maeda R, Omori T (2013). Expression, purification and characterization of meta-cleavage enzyme carbabb from Novosphiongobium sp. KA1. Journal of Biochemistry, Microbiology and Biotechnology 1:11-16.