African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Full Length Research Paper

Diversity of arbuscular mycorrhizal fungi (AMF) and soils potential infectivity of Vachellia nilotica (L.) P.J.H. Hurter & Mabb. rhizosphere in Senegalese salt-affected soils

Samba-Mbaye, R. T.
  • Samba-Mbaye, R. T.
  • Département de Biologie Végétale, Université Cheikh Anta Diop de Dakar (UCAD), Sénégal.
  • Google Scholar
Anoir, C. M.
  • Anoir, C. M.
  • Département de Biologie Végétale, Université Cheikh Anta Diop de Dakar (UCAD), Sénégal.
  • Google Scholar
Diouf, D.
  • Diouf, D.
  • Département de Biologie Végétale, Université Cheikh Anta Diop de Dakar (UCAD), Sénégal.
  • Google Scholar
Kane, A.
  • Kane, A.
  • Département de Biologie Végétale, Université Cheikh Anta Diop de Dakar (UCAD), Sénégal.
  • Google Scholar
Diop, I.
  • Diop, I.
  • Département de Biologie Végétale, Université Cheikh Anta Diop de Dakar (UCAD), Sénégal.
  • Google Scholar
Assigbete, K.
  • Assigbete, K.
  • Laboratoire Mixte International - Intensification Ecologique des Sols Cultivés en Afrique de l’Ouest (LMI-IESOL), Institut de Recherche pour le Développement, Dakar, Sénégal.
  • Google Scholar
Tendeng, P.
  • Tendeng, P.
  • Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel-Air, Dakar, Sénégal.
  • Google Scholar
Sylla, S. N.
  • Sylla, S. N.
  • Département de Biologie Végétale, Université Cheikh Anta Diop de Dakar (UCAD), Sénégal.
  • Google Scholar


  •  Received: 31 March 2020
  •  Accepted: 14 July 2020
  •  Published: 31 July 2020

References

Abbas G, Saqib M, Akhtar J, Basra SMA (2013). Salinity tolerance potential of two Acacia species at early seedling stage. Pakistan Journal of Agricultural Sciences 50(4):683-688.

 

Ashraf MY, Shirazi MU, Ashraf M, Sarwar G, Khan MA (2008). Utilization of salt-affected soils by growing some Acacia species. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Tasks for Vegetation Science (Springer, Dordrecht) 40:289-311.
Crossref

 
 

Bâ AM, Sanon KB, Duponnois R, Dexheimer J (1999). Growth response of Afzelia africana Sm. Seedlings to ectomycorrhizal inoculation in a nutrient-deficient soil. Mycorrhiza 9:91-95.
Crossref

 
 

Bâ AM, Dalpé Y, Guissou T (1996). Les Glomales d'Acacia holosericea et d'Acacia mangium. Bois et Forets des Tropiques 250:6-17.

 
 

Bargali K, Bargali SS (2009). Acacia nilotica: A multipurpose leguminous plant. Nature and Science 7(4):11-19.

 
 

Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science 10:1068.
Crossref

 
 

Bothe H (2012). Arbuscular mycorrhiza and salt tolerance of plants. Symbiosis 58:7-16.
Crossref

 
 

Chandrasekaran M, Boughattas S, Hu S, Oh SH, Sa T (2014). A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 24:611-625.
Crossref

 
 

Cho NS, Kim DH, Eom AH, Lee JH, CHoi TH, Choi HY, Leonowicz A, Ohga S (2006). Identification of Symbiotic Arbuscular Mycorrhizal Fungi in Korea by Morphological and DNA Sequencing Features of Their Spores. Journal of the Faculty of Agriculture, Kyushu University 51(2):201-210.

 
 

Davidson J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T, Johnson NC, Kane A, Koorem K, Kochar M, Ndiaye C, Pärtel M, Reier Ü, Saks Ü, Singh R, Vasar M, Zobel M (2015). Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970-973.
Crossref

 
 

Diop I, Ndoye F, Kane A, Krasova-Wade T, Pontiroli A, Do Rego F, Noba K, Prin Y (2015). Arbuscular mycorrhizal fungi (AMF) communities associated with cowpea in two ecological site conditions in Senegal. African Journal of Microbiology Research 9(21):1409-1418.
Crossref

 
 

Diouf D, Duponnois R, Ba AT, Neyra M, Lesueur D (2005). Symbiosis of Acacia auriculiformis and Acacia mangium with mycorrhizal fungi and Bradyrhizobium spp. improves salt tolerance in greenhouse conditions. Functional Plant Biology 32:1143-1152.
Crossref

 
 

Dommergues Y, Duhoux E, Diem HG (1999). Les arbres fixateurs d'azote: caractéristiques fondamentales et rôle dans l'aménagement des écosystèmes méditerrannéens et tropicaux, avec référence particulière aux zones subhumides et arides. Editions ESPACES, Montpellier 34, 512 p. ISBN 2-907293-57-5.

 
 

Fall D, Bakhoum N, Fall F, Diouf F, Faye MN, Ndiaye C, Hocher V, Diouf D (2017). Improvement of tree growth in salt-affected soils under greenhouse conditions using a combination of peanut shells and microbial inoculation. Journal of Agricultural Biotechnology and Sustainable Development 9(5):34-44.

 
 

Gardes M, Bruns TD (1993). ITS primers with enhanced specificity for basidiomycetes-Application to the identification of mycorrhizae and rusts. Molecular Ecology 2:113-118.
Crossref

 
 

Gardes M, Bruns TD (1996). ITS-RFLP matching for identification of fungi. In: Clapp JP. (Ed.). Methods In Molecular Biology. Species Diagnostics Protocols: PCR and Other Nucleic Acid Methods 416p. Humana Press Inc. Totowa, New Jersey 50:177-186.
Crossref

 
 

Gerdemann JW, Nicolson TH (1963). Spores of mycorrhizal Endogone extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46:235-244.
Crossref

 
 

Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010). Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519-530.
Crossref

 
 

Giri B, Kapoor R, Mukerji KG (2007). Improved Tolerance of Acacia nilotica to Salt Stress by Arbuscular Mycorrhiza, Glomus fasciculatum may be Partly Related to Elevated K/Na Ratios in Root and Shoot Tissues. Microbial Ecology 54(4):753-760.
Crossref

 
 

Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016). New Insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in Plant Science 7:1787.
Crossref

 
 

LADA (2009). Land degradation assessment in Senegal (2009). Evaluation of soil degradation in Senegal», FAO project Report.

 
 

Van Der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396(6706):69-72.
Crossref

 
 

Manga A, Ndiaye F, Diop TA (2017). Le champignon arbusculaire Glomus aggregatum améliore la nutrition minérale d'Acacia seyal soumis au stress salin progressif. International Journal of Biological and Chemical Sciences 11(5):2352-2365.
Crossref

 
 

Muyzer G, de Waal EC, Uitterlinden AG (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Applied and Environmental Microbiology 59:695-700.
Crossref

 
 

Muyzer G, Smalla K (1998). Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73:127-141.
Crossref

 
 

Ndoye F, Kane A, Ngonkeu Mangaptché EL, Bakhoum N, Sanon A, Diouf D, Sy MO, Baudoin E, Noba K, Prin Y (2012). Changes in land use system and environmental factors affect arbuscular mycorrhizal fungal density and diversity, and enzyme activities in rhizospheric soils of Acacia Senegal (L.) willd. International Scholarly Research Network Ecology13:1-13.
Crossref

 
 

PAPIL (2013). Etude diagnostic et cartographie de la salinité des sols et des eaux dans les régions de Fatick et Kaolack. Final report.127p.

 
 

Philips JM, Hayman DS (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of British Mycological Society 55:158-161.
Crossref

 
 

Raghuwanshi R, Upadhyay RS (2004). Performance of vesicular-arbuscular mycorrhizae in saline-alkali soil in relation to various amendments. World Journal of Microbiology and Biotechnology 20:1-5.
Crossref

 
 

Sambou A, Ndour B, Cheng S, Senghor E (2010). Ligneous Species Tolerance in Acid Sulphated and Saline Soils of Sine Saloum: Case of Rural Community of Djilass and Loul Secene. Journal of Sustainable Development 3(2):174-186.
Crossref

 
 

Sene G, Samba Mbaye R, Thiao M, Khasa D, Kane A, Manga A, Mbaye MS, Sylla SN (2012). The Abundance and Diversity of legume-nodulating rhizobia and arbuscular mycorrhizal fungal communities samples from deforested and man-made forest system in a semiarid sahel region in Senegal. European Journal of Soil Biology 52:30-40.
Crossref

 
 

SES (2016). Ecomomic and social situation in Senegal. ANSD Report, 142p.

 
 

Singh S, Thomson FB (1992). Salt tolerance in some tropical tree species. Bois et Forêts des Tropiques 234(4):61-67.

 
 

Silva-Flores P, Bueno CG, Neira J, Palfner G (2019). Factors Affecting Arbuscular Mycorrhizal Fungi Spore Density in the Chilean Mediterranean-Type Ecosystem. Journal of Soil Science and Plant Nutrition 19:42-50.
Crossref

 
 

Trouvelot A, Kouh J, Gianinazzi-pearson V (1986). Mesure du taux de mycorhization VA d'un système radiculaire: Recherche de méthodes d'estimation ayant une signification fonctionnelle. Les mycorhizes : Physiologie et génétique, 1er séminaire, 1-5 juillet 1985, INRA Dijon : 217-221.

 
 

White TJ, Bruns TD, Lee S, Taylor J (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ and White TJ eds. PCR Protocols: A Guide to Methods and Applications. Academic Press. New York pp. 315-322.
Crossref

 
 

Zhu JK (2001). Plant soil tolerance. Trends in Plant Science 6:66-71.
Crossref