African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12488

Full Length Research Paper

Optimization of chromium biosorption in aqueous solution by marine yeast biomass of Yarrowia lipolytica using Doehlert experimental design

Sarat Babu Imandi*
  • Sarat Babu Imandi*
  • Department of Biotechnology, GITAM Institute of Technology, GITAM University, Gandhinagar, Rushikonda, Visakhapatnam–530 045, AP, India.
  • Google Scholar
Ramakrishna Chinthala
  • Ramakrishna Chinthala
  • Department of Environmental studies, GITAM Institute of Sciences, GITAM University, Gandhinagar, Rushikonda, Visakhapatnam–530 045, AP, India.
  • Google Scholar
Silas Saka
  • Silas Saka
  • Department of Biotechnology, GITAM Institute of Technology, GITAM University, Gandhinagar, Rushikonda, Visakhapatnam–530 045, AP, India.
  • Google Scholar
Rama Rao Vechalapu
  • Rama Rao Vechalapu
  • Department of Biotechnology, GITAM Institute of Technology, GITAM University, Gandhinagar, Rushikonda, Visakhapatnam–530 045, AP, India.
  • Google Scholar
Kiran Kumar Nalla
  • Kiran Kumar Nalla
  • UGC Affairs & Research activities, GITAM University, Gandhinagar, Rushikonda, Visakhapatnam–530 045, AP, India.
  • Google Scholar


  •  Accepted: 22 November 2012
  •  Published: 19 March 2014

References

Abbas M, Nadeem R, Zafar MN, Arshad M (2008). Biosorption of chromium (III) and chromium (VI) by untreated and pretreated Cassia fistula biomass from aqueous solutions. Water Air Soil Pollut. 191:139-148.
Crossref
 
Achremowicz B, Kosikowski FV, Masuyama K (1977). Mixed cultures of different yeasts species and yeasts with filamentous fungi in the SCP production. 1 Production of single cell protein by mixed cultures Candida lipolytica and Candida tropicalis. Acta Microbiol. Pol. 26:265-271.
Pubmed
 
Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009). Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater. Lett. 63:1231-1234.
Crossref
 
Ahalya N, Kanamadi RD, Ramachandra TV (2005). Biosorption of chromium (VI) from aqueous solutions by the husk of Bengal gram (Cicer arientinum). Electron. J. Biotechnol. 8: ISSN: 0717-3458.
 
Aksu Z, Balibek E (2007). Chromium (VI) biosorption by dried Rhizopus arrhizus: Effect of salt (NaCl) concentration on equilibrium and kinetic parameters. J. Hazard. Mater. 145:210-220.
Crossref
 
Aksu Z, ErtuÄŸrul S, Dönmez G (2009). Single and binary chromium (VI) and Remazol Black B biosorption properties of Phormidium sp. J. Hazard. Mater. 168:310-318.
Crossref
 
Bahadir T, Bakan G, Altas L, Buyukgungor H (2007). The investigation of lead removal by biosorption: an application at storage battery industry wastewaters. Enzyme Microb. Technol. 41:98-102.
Crossref
 
Bankar AA, Kumar AR, Zinjarde SS (2009). Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica. J. Hazard. Mater. 170:487-494.
Crossref
 
Barth G, Gaillardin C (1997). Physiology and genetics of the dimorphic fungus Y. lipolytica. FEMS Microbiol. Rev. 19: 219-237.
Crossref
 
Bermúdez YG, Rico ILR, Guibal E, de Hoces MC, Martín-Lara M Á (2012). Biosorption of hexavalent chromium from aqueous solution by Sargassum muticum brown alga. Application of statistical design for process optimization. Chem. Eng. J. 183:68-76.
Crossref
 
Bossrez S, Remacle J, Coyette J (1997). Adsorption of nickel on Enterococcus hirae cell walls. J. Chem. Technol. Biotechnol. 70:45-50.
Crossref
 
De Felice B, Pontecorvo G, Carfagna M (1997). Degradation of waste waters from olive oil mills by Yarrowia lipolytica ATCC 20225 and Pseudomonas putida. Acta Biotechnol. 17:231-239.
Crossref
 
Dean SA, Tobin JM (1999). Uptake of chromium cations and anions by milled peat, Res. Conserv. Recycl. 27:151-156.
Crossref
 
Doehlert DH (1970). Uniform shell designs. Appl. Stat. 19: 231-239.
Crossref
 
Fickers P, Benetti PH, Waché Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005). Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res. 5: 527-543.
Crossref
 
García S, Prado M, Dégano R, Domínguez A (2002). A copper-responsive transcription factor, CRF1, mediates copper and cadmium resistance in Yarrowia lipolytica. J. Biol. Chem. 277: 37359-37368.
Crossref
 
GÅ‘ksungur Y, Üren S, Güvenç U (2005). Biosorption of cadmium and lead ions by ethanol treated waste baker's yeast biomass. Bioresour. Technol. 96:103-109.
Crossref
 
Hawari AH, Mulligan CN (2006). Heavy metals uptake mechanisms in a fixed bed column by calcium treated anaerobic biomass. Process Biochem. 41:187-198.
Crossref
 
Imandi SB, Bandaru VVR, Somalanka SR, Bandaru SR, Garapati HR (2008). Application of statistical experimental designs for the optimization of medium constituents for the production of citric acid from pine apple waste. Bioresour. Technol. 99:4445-4450.
Crossref
 
Imandi SB, Bandaru VVR, Somalanka SR, Garapati HR (2007). Optimization of medium constituents for the production of citric acid from byproduct glycerol using Doehlert experimental design. Enzyme Microb. Technol. 40:1367-1372.
Crossref
 
Imandi SB, Karanam SK, Darsipudi S, Garapati HR (2010). Growth rate data fitting of Yarrowia lipolytica NCIM 3589 using logistic equation and artificial neural networks. Adv. Biosci. Biotechnol. 1:47-50.
Crossref
 
Ito H, Inouche M, Tohoyama H, Joho M (2007). Characteristics of copper tolerance in Yarrowia lipolytica. Biometals. 20:773-780.
Crossref
 
Jain MR, Zinjarde SS, Deobagkar DD, Deobagkar DN (2004). 2,4,6- Trinitrotolune transformation by a tropical marine yeast, Yarrowia lipolytica NCIM 3589. Mar. Pollut. Bull. 49:783-788.
Crossref
 
Johnson V, Patel SJ, Patel KA, Mehta MH (1994). Caprolactam waste liquor degradation by various yeasts. World J. Microbiol. Biotechnol. 10:524-526.
Crossref
 
Khambhaty Y, Mody K, Basha S, Jha B (2009). Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger. Chem. Eng. J. 145:489-495.
Crossref
 
Kiran B, Thanasekaran K (2011). Copper biosorption on Lyngbya putealis: Application of response surface methodology (RSM). Int. Biodeterior. Biodegrad. 65: 840-845.
Crossref
 
Kumar R, Singh R, Kumar N, Bishnoi K, Bishnoi NR (2009). Response surface methodology approach for optimization of biosorption process for removal of Cr (VI), Ni (II) and Zn (II) ions by immobilized bacterial biomass sp. Bacillus brevis. Chem. Eng. J. 146:401-407.
Crossref
 
Lanciotti R, Gianotti A, Baldi D, Angrisani R, Suzzi G, Mastrocola D, Guerzoni ME (2005). Use of Yarrowia lipolytica strains for the treatment of olive mill wastewater. Bioresour. Technol. 96:317-322.
Crossref
 
Lazić Ź (2004). Design of Experiments in Chemical Engineering. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
 
Margesin R, Schinner F (1997). Effect of temperature on oil degradation by a psychrotrophic yeast in liquid culture and in soil. FEMS Microbiol. Ecol. 24:243-249.
Crossref
 
Massara H, Mulligan CN, Hadjinicolaou J (2008). Hexavalent chromium removal by viable, granular anaerobic biomass. Bioresour. Technol. 99:8637-8642.
Crossref
 
Mohanty K, Jha M, Meikap BC, Biswas MN (2006). Biosorption of Cr(VI) from aqueous solutions by Eichhornia crassipes. Chem. Eng. J. 117: 71-77.
Crossref
 
Mona S, Kaushik A, Kaushik CP (2011). Biosorption of chromium (VI) by spent cyanobacterial biomass from a hydrogen fermentor using Box-Behnken model. Int. Biodeterior. Biodegrad. 65: 656-663.
Crossref
 
Oswal N, Sharma PM, Zinjarde SS, Pant A (2002). Palm oil mill effluent treatment by a tropical marine yeast. Bioresour. Technol. 85:35-37.
Crossref
 
Özer A, Özer D (2003). Comparative study of the biosorption of Pb (II), Ni(II) and Cr(VI) ions onto Saccharomyces cerevisiae: determination of biosorption heats. J. Hazard. Mater. 100:219-229.
Crossref
 
Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002). Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl. Microbiol. Biotechnol. 58:308-312.
Crossref
 
Preetha B, Viruthagiri T (2007). Application of response surface methodology for the biosorption of copper using Rhizopus arrhizus. J. Hazard. Mater. 143: 506-510.
Crossref
 
Quintelas C, Fonseca B, Silva B, Figueiredo H, Tavares T (2009). Treatment of chromium (VI) solutions in a pilot-scale bioreactor through a biofilm of Arthrobacter viscosus supported on GAC. Bioresour. Technol. 100:220-226.
Crossref
 
Åžahin Y, Öztürk A (2005). Biosorption of chromium (VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Proc. Biochem. 40:1895-1901.
Crossref
 
Schiewer S, Volesky B (1995). Modeling of the proton-metal ion exchange in biosorption. Environ. Sci. Technol. 29:3049-3058.
Crossref
 
Sen M, Ghosh-Dastidar M, Roychoudhary PK (2005). Biosorption of chromium (VI) by nonliving Fusarium sp. isolated from soil, Pract. Period Hazard. Toxic Radioactive Waste Manage. 9:147-151.
Crossref
 
Strouhal M, Kizek R, Vacek J, Trnkova L, Nemec M (2003). Electrochemical study of heavy metals and metallothionein in yeast Yarrowia lipolytica. Bioelectrochemistry. 60:29-36.
Crossref
 
Suksabye P, Thiravetyan P, Nakbanpote W (2008). Column study of chromium (VI) biosorption from electroplating industry by coconut coir pith. J. Hazard. Mater. 160:56-62.
Crossref
 
Ucun H, Bayhan YK, Kaya Y, Cakici A, Algur PF (2002). Biosorption of chromium (VI) from aqueous solution by cone biomass of Pinus sylvestris. Bioresour. Technol. 85:155-158.
Crossref
 
Vinod VTP, Sashidhar RB, Sreedhar B (2010). Biosorption of nickel and total chromium from aqueous solution by gum kondagogu (Cochlospermum gossypium): A carbohydrate biopolymer. J. Hazard. Mater. 178:851-860.
Crossref
 
Xuejiang W, Ling C, Siqing X, Jianfu Z, Chovelon JM, Renault NJ (2006). Biosorption of Cu (II) and Pb (II) from aqueous solutions by dried activated sludge. Miner Eng. 19:968-971.
Crossref
 
Ye J, Yin H, Mai B, Peng H, Qin H, He B, Zhang N (2010). Biosorption of chromium from aqueous solution and electroplating wastewater using mixture of Candida lipolytica and dewatered sewage sludge. Bioresour. Technol. 101:3893-3902.
Crossref
 
Yin H, He B, Lu X, Peng H, Ye J, Yang F (2008). Improvement of chromium biosorption by UV-HNO2 cooperative mutagenesis in Candida utilis. Water Res. 42:3981-3989.
Crossref
 
Zhou M, Liu Y, Zeng G, Li X, Xu W, Fan T (2007). Kinetic and equilibrium studies of Cr (VI) biosorption by dead Bacillus licheniformis biomass. World J. Microbiol. Biotechnol. 23:43-48.
Crossref
 
Zinjarde SS, Pant AA (2002). Hydrocarbon degraders from tropical marine environments. Mar. Pollut. Bull. 44: 118-121.
Crossref