African Journal of
Environmental Science and Technology

  • Abbreviation: Afr. J. Environ. Sci. Technol.
  • Language: English
  • ISSN: 1996-0786
  • DOI: 10.5897/AJEST
  • Start Year: 2007
  • Published Articles: 1123

Article in Press

Variability of the magnetospheric electric field due to high-speed solar wind convection from 1964 to 2009

Zoundi Christian,

  •  Received: 19 October 2021
  •  Accepted: 10 December 2021
Focusing on the classification of solar winds into three types of flux: (1) slow winds, (2) fluctuating winds and (3) high speed-solar winds HSSW (V ? 450 km / s on average day), the influence of the convection electric field (EM) via the flow of HSSWs during storms in the internal magnetosphere and on the stability of magnetospheric plasma at high latitudes was investigated. Our study involved 1964-2009 period, which encompasses solar cycles 20, 21, 22 and 23. The results show a weak correlation of the frozen electric field profiles with the HSSWs over all solar cycles and a very large number of HSSWs recorded in cycle 23. Particular attention has been paid to solar cycle 22 which rather presents a fairly disturbed profile with sudden variations in solar flux and EM field; however, solar cycle 21 records the lowest level of HSSW. Overall, over all the studied solar cycles, it can be seen that the EM field from HSSWs of very low intensity increases progressively from solar cycle 20 to cycle 23, respectively with a minimum occurrence of 8.48% and a maximum of 9.36%. The results we have reached show, on the one hand, that the magnetosphere is very stable from 15:00UT to 21:00UT, and on the other hand, that there is a significant transfer of mass in the night sector (21:00UT-24:00UT) than on the day side (00:00UT-15:00UT) for all solar cycles over the long period of 45 years.

Keywords: Solar cycle, solar wind, magnetosphere, geomagnetic convection, electric field.