African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Full Length Research Paper

Comparative studies between growth regulators and nanoparticles on growth and mitotic index of pea plants under salinity

Hala G. El-Araby
  • Hala G. El-Araby
  • Biological and Environmental Science Department, Faculty of Home Economics, Al-Azhar University, Egypt.
  • Google Scholar
Sahar F.M. El-Hefnawy
  • Sahar F.M. El-Hefnawy
  • Biological and Environmental Science Department, Faculty of Home Economics, Al-Azhar University, Egypt.
  • Google Scholar
Mohammed A. Nassar
  • Mohammed A. Nassar
  • Agriculture Botany Department, Faculty of Agriculture, Al-Azhar University, Egypt.
  • Google Scholar
Nabil I. Elsheery
  • Nabil I. Elsheery
  • Agriculture Botany Department, Faculty of Agriculture, Tanta University, Egypt.
  • Google Scholar


  •  Received: 03 July 2020
  •  Accepted: 27 July 2020
  •  Published: 31 August 2020

References

Abdul Qados MSA (2011). Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences 10:7-15.
Crossref

 

Acosta-Motos JR, Penella C, Hernández JA, Díaz-Vivancos P, Sánchez-Blanco M J, Navarro JM, Gómez-Bellot MJ, Barba-Espín G (2020). Towards a Sustainable

 
 

Agriculture: Strategies Involving phytoprotectants against Salt Stress. Agronomy 10:1-32.

 
 

Ali RM (2000). Role of putrescine in salt tolerance of Atropa belladonna plant. Plant Science 152:173-179.
Crossref

 
 

Al-Kaisy W, Sahar A, Mahadi F (2018). Response of pea (Pisum sativum L.) to foliar application of ABA and vitamin C and interaction of them on some physiological characters of plant. Al-Mustansiriyah Journal of Science 29:32-37.
Crossref

 
 

Al-Karaki GN (2001). Germination, sodium and potassium concentrations of barley seeds as influenced by salinity. Journal of Plant Nutrition 24:511-522.
Crossref

 
 

Al-Mayahi AMW (2016). Influence of salicylic acid (SA) and ascorbic acid (ASA) on in vitro propagation and salt tolerance of date palm (Phoenix dactylifera L.) cv. 'Ner¬sy'. Australian Journal of Crop Science 10(7):969-976.
Crossref

 
 

Anwar A, Wang J, Yu X, He Ch, Li Y (2020). Substrate Application of 5- aminolevulinic acid enhanced low-temperature and weak-light stress tolerance in cucumber (Cucumis sativus L.). Agronomy 10:1-12.
Crossref

 
 

Anwar A, Yan Y, Liu Y, Li Y, Yu X (2018). 5-aminolevulinic acid improves nutrient uptake and endogenous hormone accumulation, enhancing low-temperature stress tolerance in cucumbers. International Journal of Molecular Science 19:33-49.
Crossref

 
 

Autifi M, Mohamed W, Abdul Haye W, Elbaz K (2018). The possible protective role of vitamin C against toxicity induced by lead acetate in liver and spleen of adult albino rats (light and electron microscopic study). The Egyptian Journal of Hospital Medicine 73:7650-7658.

 
 

Barakat H (2003). Interactive effects of salinity and certain vitamins on gene expression and cell division. International Journal of Agriculture and Biology 5:219-225.

 
 

Bargaz A, Nassar RMA, Rady MM, Gaballah MS, Thompson SM, Brestic M, Schmidhalter U, Abdelhamid MT (2016). Improved salinity tolerance by phosphorus fertilizer in two Phaseolus vulgaris recombinant inbred lines contrasting in their p-efficiency. Journal of Agronomy and Crop Science 202:497-507.
Crossref

 
 

Bhattacharjee A, Basu A, Ghosh P, Biswas J, Bhattacharya S (2014). Protective effect of Selenium nanoparticle against cyclophosphamide induced hepatotoxicity and genotoxicity in Swiss albino mice. Journal of Biomaterials Applications 29:303-317.
Crossref

 
 

Bronzetti G, Cini M, Andreoli E, Caltavuturo L, Panunzio M (2001). Protective effects of vitamins and selenium compounds in yeast. Croce CD. PubMed 496:105-115.
Crossref

 
 

ÇavuÅŸoÄŸlu K, Cadıl S, ÇavuÅŸoÄŸlu D (2017). Role of potassium nitrate (KNO3) in alleviation of detrimental effects of salt stress on some physiological and cytogenetical parameters in Allium cepa L. Cytologia 82:279-286.
Crossref

 
 

ÇavuÅŸoÄŸlu K, Kaya F, Kılıç S (2013). Effects of boric acid pretreatment on the seed germination, seedling growth and leaf anatomy of barley under saline conditions. Journal Food Agriculture and Environment 11:376-380.

 
 

ÇavuÅŸoÄŸlu K, Kılıç S, Kabar K (2007). Some morphological and anatomical observations during alleviation of salinity (NaCl) stress on seed germination and seedling growth of barley by polyamines. Acta Physiologiae Plantarum 29:551-557.
Crossref

 
 

Chau CF, Wu SH, Yen GC (2007). The development of regulations for food nanotechnology. Trends in Food Science and Technology 18:269-280.
Crossref

 
 

Colla G, RouphaelY, Cardarell M, Massa D, Salerno A, Rea, E (2006a). Yield, fruit quality and mineral composition of grafted melon plants grown under saline conditions. Horticulture Science and Biotechnology 81:146-152.
Crossref

 
 

Colla G, RouphaelY, Jawad R, Cardarell M, Rea E (2006b). Effect of salinity on yield, fruit quality, leaf gas exchange and mineral composition of grafted watermelon plants. Horticulture Science and Biotechnology 41:622-627.
Crossref

 
 

Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012). Nanotechnologies in the food industry-Recent developments, risks and regulation. Trends in Food Science and Technology 24:30-46.
Crossref

 
 

Darlington C (1976). La cour. L.R, The Handling of Chromosomes, George Alien and Unwin, London P. 182.

 
 

Dawood MG, Taie HAA, Nassar RMA, Abdel hamid MT, Schmidhalter U (2014). The changes induced in the physiological, biochemical and anatomical characteristics of Vicia faba by the exogenous application of proline under seawater stress. South African Journal of Botany 93:54-63.
Crossref

 
 

Desoky EM, Merwad AM, Elrys AS (2017). Response of pea plants to natural bio-stimulants differences and commonalities of plant responses to single and combined stresses, under soil salinity stress. American Journal and Plant Physiology 12:28-37.
Crossref

 
 

Ekanayake LJ, Thavarajah D, Vial E, Schatz B, McGee R, Thavarajah P (2015). Selenium fertilization on lentil (Lens culinaris Medikus) grain yield, seed selenium concentration and antioxidant activity. Field Crops Research 177:9-14.
Crossref

 
 

Elkelish A, Qari SH, Mazrou YSA, Abdelaal KAA, Hafez YM, Abu-Elsaoud AM, Batiha GE, El-Esawi MA, El Nahhas N (2020). Exogenous ascorbic acid induced chilling tolerance in tomato plants through modulating metabolism, osmolytes, antioxidants and transcriptional regulation of catalase and heat shock proteins. Plants 9:1-27.
Crossref

 
 

Elsheery N, Sunoj VSJ, Wen Y, Zhu JJ, Muralidharan G, Cao KF (2020a). Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane. Plant Physiology and Biochemistry 149:50-60.
Crossref

 
 

Elsheery N, Helaly M, El-Hoseiny H, Alam-Eldein Sh (2020b). Zinc oxide and silicone nanoparticles to improve the resistance mechanism and annual productivity of salt-stressed mango trees. Agronomy 10:953-975.
Crossref

 
 

Elsheery N, Helaly M, Omar S, John S, Zabochnicka-Swiatek M, Kalaji H, Rastogi A (2020c). Physiological and molecular mechanisms of salinity tolerance in grafted cucumber. South African Journal of Botany 130:90-102.
Crossref

 
 

Gama PBS, Inanaga S, Tanaka K, Nakazawa R (2007). Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress. African Journal of Biotechnology 6:79-88.

 
 

Germ M, Kreft I, Stibilj V, Urbanc-Berčič O (2007). Combined effects of selenium and drought on photosynthesis and mitochondrial respiration in potato. Plant Physiology and Biochemistry 45:162-167.
Crossref

 
 

Ghezal N, Rinez I, Sbai H, Saad I, Farooq M, Rinez A, Zribi I, Haouala R (2016). Improvement of Pisum sativum salt stress tolerance by bio-priming their seeds using Typha angustifolia leaves aqueous extract. South African Journal of Botany 105:240-250.
Crossref

 
 

Ghoulam C, Fares K (2001). Effect of salinity on seed germination and early seedling growth of sugar beet (Beta vulgaris L.). Seed Science Technology 29:357-364.

 
 

Hanafy MS, El-Banna A, Schumacher HM, Jacobsen HJ, Hassan FS (2013). Enhanced tolerance to drought and salt stresses in transgenic faba bean (Vicia faba L.) plants by heterologous expression of the PR10a gene from potato. Plant Cell Reports 32:663-674.
Crossref

 
 

Helaly M, El-Hosieny H, Elsheery N, Kalaji H (2016). Effect of biofertilizers and putrescine amine on the physiological features and productivity of date palm (Phoenix dactylifera L.) grown on reclaimed-salinized soil. Trees 30:1149-1161.
Crossref

 
 

Hoagland DR, Arnon DI (1950). The water culture method for growing plants without soil. California Agricultural Experimental Station Circular. University of California, Berkeley 347:1-32.

 
 

Hoda Q, Bose S, Sinha S (1991). Vitamin C mediated minimization of malathion and rogor induced mito-inhibition and clastogeny. Cytologia 56:89-97.
Crossref

 
 

Hopkins WG (1995). Introduction to Plant Physiology. New York: John Wiley pp. 72-73.

 
 

Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M (1997). New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content, and plant growth. Bioscience, Biotechnology and Biochemistry 61:2025-2028.
Crossref

 
 

Hussein MM, Abd El-Khader A, El-Faham SY (2019). Mineral status and lupine yield responses to ascorbic acid spraying and irrigation by diluted sea water. Asian Journal of Biology 8:1-13.
Crossref

 
 

Jampílek J, Kráľová K (2017). Nanomaterials for delivery of nutrients and growth-promoting compounds to plants. Nanotechnology: An Agricultural Paradigm 9:177-226.
Crossref

 
 

Kamle M, Devi Sh, Mahato DK, Soni R, Kumar P, Tripathi V (2020). Nanotechnological interventions for plant health improvement and sustainable agriculture. Recent Patents on Food, Nutrition and Agriculture 10:168-181.
Crossref

 
 

Kamran M, Parveen A, Ahmar S, Malik Z, Hussain S, Chattha M, Saleem M, Adil M, Heidari P, Chen J (2020). An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms and amelioration through selenium supplementation. International Journal of Molecular Sciences 21:1-27.
Crossref

 
 

Khan NA, Nazar R, Anjum NA (2009). Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivar differing in ATP-sulfurylase activity under salinity stress. Scientia Horticulturae 122:455-460.
Crossref

 
 

Kumar KA, Sugunamma V, Sandeep N (2020). Influence of viscous dissipation on MHD flow of micropolar fluid over a slendering stretching surface with modified heat flux model. Journal of Thermal Analysis and Calorimetry 139:3661-3674.
Crossref

 
 

Latif M, Akram, NA, Ashraf M (2016). Regulation of some biochemical attributes in drought-stressed cauliflower (Brassica oleracea L.) by seed pre-treatment with ascorbic acid. Journal Horticulture Science Biotechnology 91:129-137.
Crossref

 
 

Liu D, Hu L, Ali B, Yang A, Wan G, Xu L, Zhou W (2016). Influence of 5-aminolevulinic acid on photosynthetically related parameters and gene expression in Brassica napus L. under drought stress. Soil Science and Plant Nutrient 62:254-262.
Crossref

 
 

Liu L, Nguyen NT, Ueda A, Saneoka H (2014). Effects of 5-aminolevulinic acid on swiss chard (Beta vulgaris L. subsp. cicla) seedling growth under saline conditions. Frontiers in Plant Science 74:219-228.
Crossref

 
 

McCue KF, Hanson AD (1990). Drought and salt tolerance: Towards understanding and application. Trends Biotechnology 8:358-362.
Crossref

 
 

Memon SA, Hou X, Wang LJ (2010). Morphological analysis of salt stress response of pak Choi. EJEAFCHe 9:248-254.

 
 

Naeem MS, Rasheed M, Liu D, Jin ZL, Ming DF, Yoneyama K, Takeuchi Y, Zhou WJ (2011). Role of 5-aminolevulinic acid on growth, photosynthetic parameters and antioxidant enzyme activity in NaCl-stressed Isatis indigotica. Fort. Acta Physiologiae Plantarum 518:517-528.
Crossref

 
 

Naeem MS, Warusawitharana H, Liu H, Liu D, Ahmad R, Waraich EA (2012). 5-Aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast. Plant Physiololgy and Biochemistry 57:84-92.
Crossref

 
 

Nassar MA, Azoz DN, Wessam S, Serag El-Din M (2019). Improved growth and productivity of basil plants grown under salinity stress by foliar application with ascorbic acid. Middle East Journal of Agriculture 8:211-225.

 
 

Nassar R, Nermeen T, Reda F (2016). Active yeast extract counteracts the harmful effects of salinity stress on the growth of leucaena plant. Scienta Horticulturae 201:61-67.
Crossref

 
 

Nazar R, Iqbal N, Syeed S, Khan NA (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mung bean cultivars. Journal of Plant Physiology 168:807-815.
Crossref

 
 

Nishihara E, Kondo K, Masud Parvez M, Takahashi K, Watanabe K, Tanaka K (2003). Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). Plant Physiology 160:1085-1091.
Crossref

 
 

Prakash L, Dutt M, Prathapasenan G (1988). NaCl alters contents of nucleic acids, proteins, polyamines and the activity of agmatine deiminase during germination and seedling growth of rice (Oryza sativa L.). Australia and Plant Physiology 15:769-776.
Crossref

 
 

Prasad R, Kumar V, Prasad KS (2014). Nanotechnology in sustainable agriculture: Present concerns and future aspect. African Journal of Biotechnology 13:705-713.
Crossref

 
 

Radić S, Pavlica M, Babić M, Pevalek-Kozlina B (2009). Cytogenetic effects of osmotic stress on the root meristem cells of Centaurea ragusina L. Environmental and Experimental Botany 54:213-218.
Crossref

 
 

Rafaqat A, Ali G, Islam F, Muhammad F, Theodore M, Zhou M (2015). Physiological and molecular analyses of black and yellow seeded Brassica napus regulated by 5-aminolivulinic acid under chromium stress. Journal of Plant Physiology and Biochemistry 94:130-143.

 
 

Rastogi D, Kumar T, Saurabh Y, Chauhan D, Živčák M, Ghorbanpour M, El-Sheery N, Brestic M (2019). Application of silicon nanoparticles in agriculture. PMC National Library of Medicine National Institutes of Health 9:90-102.
Crossref

 
 

Reda M (2007). Morphological, anatomical and physiological studies on Senna occidentalis (L.) Link plants grown under stress of different levels of salinity in irrigation water. Journal Agriculture Science, Mansoura University 32:8301-8314.

 
 

Saha P, Chatterjee P, Biswas AK (2010). NaCl pre-treatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian Journal of Experimental Biology 48:593-600.

 
 

Sairam RK, Tyagi A (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science 86:407-421.

 
 

Sajid M, Mustafa A, Niamat B, Ahmad Z, Yaseen M, Kamran M, Rafique M, Ahmar S, Chen J (2020). Alleviation of salinity-induced oxidative stress, improvement in growth, physiology and mineral nutrition of canola (Brassica napus L.) through calcium-fortified composted animal manure. Sustainability 12:1-17.
Crossref

 
 

Shahzad H, Ullah S, Iqbal M, Bilal HM, Shah GM, Ahmad S, Zakir A, Ditta A, Farooqi MA (2020). Exogenous ascorbic acid induced chilling tolerance in tomato plants through modulating metabolism, osmolytes, antioxidants, and transcriptional regulation of catalase and heat shock proteins. Plants 9:1-21.
Crossref

 
 

Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001). Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiology Plant 112:487-494.
Crossref

 
 

Shang Y, Hasan K, Golam J, Li M, Yin H, Zhou J (2019). Applications of nanotechnology in plant growth and crop protection. Molecules 24:1-24.
Crossref

 
 

Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B (2019). Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9:1-36.
Crossref

 
 

Shedeed Sh, Fawzy Z, El-Bassiony A (2018). Nano and mineral selenium foliar application effect on pea plants (Pisum sativum L.). Bioscience Research 15:645-654.

 
 

Shi Y, Wang Y, Flowers T, Gong H (2013). Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. Journal of Plant Physiology 170:847-853.
Crossref

 
 

Sonkaria S, Ahn SH, Khare V (2012). Nanotechnology and its impact on food and nutrition. Recent Patents on Food, Nutrition and Agriculture 4:8-18.
Crossref

 
 

Tabur S, Demir K (2010a). Role of some growth regulators on cytogenetic activity of barley under salt stress. Plant Growth Regulators 60:99-104.
Crossref

 
 

Tabur S, Demir K (2010b). Protective roles of exogenous polyamines on chromosomal aberrations in Hordeum vulgare exposed to salinity. Biologia 65:947-953.
Crossref

 
 

Tabur S, Demir K (2009). Cytogenetic response of 24-epibrassinolide on the root meristem cells of barley seeds under salinity. Plant Growth Regulators 58:119-123.
Crossref

 
 

Taïbi F, Taïbi K, Belkhodja M (2013). Salinity effects on the physiological response of two bean genotypes Phaseolus vulgaris L. Arab Gulf Journal of Scientific Research 31:90-98.

 
 

Tang XQ, Wang Y, Xiao YH (2017a). role of 5-aminolevulinic acid on growth, photosynthetic parameters and antioxidant enzyme activity in NaCl-stressed Isatis indigotica Fort. Russian Journal of Plant Physiology 64:198-206.
Crossref

 
 

Tang Y, Liu K, Zhang J, Li X, Xu K, Zhang Y (2017b). JcDREB2, a physic nut AP2/ERF gene, alters plant growth and salinity stress responses in transgenic rice. Frontiers in Plant Science 8:306-324.
Crossref

 
 

Watanabe K, Tanaka T, Kuramochi H, Takeuchi Y (2000). Improving salt tolerance of cotton seedling with 5-aminolevulinic acid. Plant Growth Regulators 32:97-101.
Crossref

 
 

Wu W, Elsheery N, Wei Q, Zhang L, Huang J (2011). Defective etioplasts observed in variegation mutants may reveal the light independent regulation of white/yellow sectors of Arabidopsis leaves. Journal of Integrative Plant Biology 53:846-857.
Crossref

 
 

Wu Y, Jin X, Liao W, Hu L, Dawuda M, Zhao X, Tang Z, Gong T, Yu J (2018). 5-aminolevulinic acid (ALA) alleviated salinity stress in cucumber seedlings by enhancing chlorophyll synthesis pathway. Frontiers in Plant Science 9:635-646.
Crossref

 
 

Wu J, Zhao Q, Wu G, Yuan H, Ma Y, Lin H, Pan L, Li S, Sun D (2019a). Comprehensive analysis of differentially expressed unigenes under NaCl stress in flax (Linum usitatissimum L.) using RNA-Seq. International Journal of Molecular Science 20:2-8.

 
 

Wu Y, Liao W, Dawuda M, Hu L, Yu J (2019b). 5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: A review. Plant Growth Regulators 87:357-374.
Crossref

 
 

Yu J, Zhao W, Tong W, He Q, Yoon M, Li F, Choi B, Heo E, Kim K, Park Y (2019). Genome-wide association study reveals candidate genes related to salt tolerance in rice (Oryza sativa) at the germination stage. International Journal of Molecular Science 19:31-45.
Crossref

 
 

Zedan A, Omar S (2019). Nano Selenium: Reduction of severe hazards of atrazine and promotion of changes in growth and gene expression patterns on Vicia faba seedlings. African Journal of Biotechnology 18:502-510.
Crossref

 
 

Zhang CP, He P, Wei PX, Du DD, Yu ZL (2011). Effect of exogenous 5- aminolevulinic acid on seed germination and antioxidase activities of Perilla frutescens seedlings under NaCl stress. Chinese Traditional and Herbal Drugs 42:1194-1200.

 
 

Zhang H, Sonnewald U (2017). Differences and commonalities of plant responses to single and combined stresses. The Plant Journal 90:839-855.
Crossref

 
 

Zhang Y (2013). Biological role of ascorbate in plants (Chapter 2). Springer Briefs in Plant Science 7-18.
Crossref