African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12488

Full Length Research Paper

Antimicrobial activities, toxinogenic potential and sensitivity to antibiotics of Bacillus strains isolated from Mbuja, an Hibiscus sabdariffa fermented seeds from Cameroon

Bouba-Adji Mohammadou*
  • Bouba-Adji Mohammadou*
  • Department of Food Engineering and Quality Control, University Institute of Technology, P. O. Box 454 Ngaoundere, Cameroon.
  • Google Scholar
Gwenaelle Le Blay
  • Gwenaelle Le Blay
  • Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (EA 3882), Université de Brest, Université Européenne de Bretagne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Université de Brest, Université Européenne de Bretagne, IUEM-UMR 6197 CNRS-IFREMER, Place Nicolas Copernic, F-29280 Plouzané, France.
  • Google Scholar
Carl Moses Mbofung
  • Carl Moses Mbofung
  • Department of Food Science and Nutrition, National School of Agro-Industrial Sciences, P. O. Box 455 Ngaoundere, Cameroon.
  • Google Scholar
Georges Barbier
  • Georges Barbier
  • Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (EA 3882), Université de Brest, Université Européenne de Bretagne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
  • Google Scholar


  •  Received: 10 May 2014
  •  Accepted: 04 July 2014
  •  Published: 27 August 2014

References

Abriouel H, Franz CM, Ben Omar N, Gálvez A (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35(1):201–32.
Crossref

 

Adewumi GA, Quadri RA, Oguntoyinbo FA (2009). Antibiotic sensitivity pattern of Bacillus species isolated from solid substrate fermentation of cassava for gari production. Afr. J. Microbiol. Res. 3(11):840–843.

Academic Journals

 
 

Agata N, Ohta M, Arakawa Y, Mori M (1995). The bceT gene of Bacillus cereus encodes an enterotoxic protein. Microbiol. 141:983–988.
Crossref

 
 

Asano SI, Nukumizu Y, Bando H, Hzuka T, Yamamoto T (1997). Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Appl. Env. Microbiol. 63:1054–1057.
Pubmed

 
 

Aslim B, Saglam N, Beyatli Y (2002). Determination of some properties of Bacillus isolated from soil. Türk. J. Biol. 26:41–48.

 
 

Bobrowski VL, Pasquali G, Bodanese-Zanettini MH, Fiuza LM (2001). Detection of cry1 genes in Bacillus thuringiensis isolates from south of Brazil and activity against Anticarsia gemmatalis (Lepidoptera: Noctuidae). Braz. J. Microbiol. 32: 105–109.
Crossref

 
 

Bozlagan I, Ayvaz A, Öztürk F, Acik L, Akbulut M, Yilmaz S (2010). Detection of the cry1 gene in Bacillus thuringiensis isolates from agricultural fields and their bioactivity against two stored product moth larvae. Türk. J. Agric. Forest. 34: 145–154.

 
 

Céron J, Ortiz A, Quintero R, Güereca L, Bravo A (1995). Specific PCR primers directed to identify cryI and cryIII genes within a Bacillus thuringiensis strain collection. Appl. Env. Microbiol. 6(11):3826–3831.

 
 

Chaves JQ, Pires ES, Vivoni AM (2011). Genetic diversity, antimicrobial resistance and toxinogenic profiles of Bacillus cereus isolated from food in Brazil over three decades. Int. J. Food Microbiol. 147:12–16.
Crossref

 
 

Cinar C, Apaydin O, Yenidunya AF, Harsa S, Gunes H (2007). Isolation and characterization of Bacillus thuringiensis strains from olive-related habitats in Turkey. J. Appl. Microbiol. 104(2):515–525.
Pubmed

 
 

Damgaard PH, Jacobson CS, Sorensen J (1996). Development and application of a primer set for specific detection of Bacillus thuringiensis and Bacillus cereus in soil using magnetic capture hybridization and PCR amplification. Syst. Appl. Microbiol. 19:436–441.
Crossref

 
 

Dautle MP, Ulrich RI, Hughes TA (2004). In vitro sensitivity and resistance of 100 clinical bacterial isolates purified from microbial biofilms associated with silicone gastronomy tubes removed from pediatric patients. J. Appl. Res. 4(1):50–59.

 
 

Djouldé DR, Essia Ngang JJ, Etoa FX (2007). Nutritive Value, Toxicological and Hygienic Quality of Some Cassava Based Products Consumed in Cameroon. Pak. J. Nutr. 6(4):404–408.
Crossref

 
 

From C, Pukall R, Schumann P, Hormazabal V, Granum PE (2005). Toxin-Producing Ability among Bacillus spp. Outside the Bacillus cereus Group. Appl. Env. Microbiol. 71 (3):1178–1183.
Crossref

 
 

Granum PE, O'Sullivan, Lund T (1999). The sequence of the non-hemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol. Lett. 177:225–229.
Crossref

 
 

Hisieh YM, Sheu SJ, Chen YL, Tsen HY (1999). Enterotoxinogenic profiles and polymerase chain reaction detection of Bacillus cereus group cells and B. cereus from food-borne outbreaks. J. Appl. Microbiol. 87:481–490.
Crossref

 
 

Khalil R, Elbahloul Y, Djadouni F, Omar S (2009). Isolation and partial characterization of a bacteriocin produced by a newly isolated Bacillus megaterium 19 strain. Pak. J. Nutr. 8: 242–250.
Crossref

 
 

Klein C, Kaletta C, Schnell N, Entian KD (1992). Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl. Env. Microbiol. 58(1):132–142.
Pubmed

 
 

Kramer JM, Gilbert RJ (1989). Bacillus cereus and other Bacillus species. In MP Doyle (Ed.), Foodborne bacteria pathogens New York: Marcel Dekker. pp 21–70.

 
 

Luna VA, King DS, Gulledge J, Cannons AC, Amuso PT, Cattani J (2007). Susceptibility of Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus pseudomycoides and Bacillus thuringiensis to 24 antimicrobials using Sensititre® automated microbroth dilution and Etest® agar gradient diffusion methods. J. Antimicrobial Chem. 60:555–567.
Crossref

 
 

Magnusson J, Schnürer J (2001). Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl. Env. Microbiol. 5(1):1–5.
Crossref

 
 

Matarante A, Baruzzi F, Cocconcelli PS, Morea M (2004). Genotyping and toxinogenic potential of Bacillus subtilis and Bacillus pumilus strains occurring in industrial and artisanal cured sausages. Appl. Env. Microbiol. 7(9):5168–5176.
Crossref

 
 

Mbiapo FD, Tchana A, Moundipa PF (1989). Les aflatoxines dans les céréales et les aliments prêts à la consommation au Cameroun. In J.L. Libbey (Ed.), Céréales en régions chaudes Paris : AUPELF- UREF. pp 157–163.

 
 

Mohamadou BA, Mbofung CMF, Barbier G (2013). Genotypic and phenotypic diversity among Bacillus species isolated from Mbuja, a Cameroonian traditional fermented condiment. Afr. J. Biotechnol. 12(12):1335-1343.

 
 

Mohamadou BA, Mbofung CMF, Thouvenot D (2009). Microbiological and organoleptic profiles of Mbuja, a condiment produced in Cameroon by fermenting Hibiscus sabdariffa seeds. J. Food Technol. 7(3):84–91.

 
 

Mohamadou BA, Mbofung CMF, Thouvenot D (2007). Functional potential of a product from traditional biotechnology: antioxidant and probiotic potential of Mbuja, produced by fermentation of Hibiscus sabdariffa seeds in Cameroon. J. Food Technol. 5(2):164–168.

 
 

Morpeth SC, Ramadhani HO, Crump JA (2009). Invasive non-Typhi Salmonella disease in Africa. Clinical Infect. Dis. 49 (4):606–611.
Crossref

 
 

N'dir B, Hbid CL, Cornelius C, Roblain D, Jacques P, Vanhentenryck F, Diop M, Thonard P (1994). Antifungal properties of sporeforming microflora from Nététu. Cahiers Agric. 3 :23–30.

 
 

Njongmeta NL, Ejoh RA, Djouldé R, Mbofung CM, Etoa FX (2004). Microbiological and safety evaluation of street vended meat and meat product in the Ngaoundere metropolis (Cameroon). Microbiol. Hyg. Alim. 16(47):43–48.

 
 

Ouoba LII, Diawara B, Jespersen L, Jakobsen M (2007). Antimicrobial activity of Bacillus subtilis and Bacillus pumilus during the fermentation of African locust bean (Parkia biglobosa) for Soumbala production. J. Appl.Microbiol. 1(2):963–970.

 
 

Phelps RJ, McKillip JL (2002). Enterotoxin production in natural isolates of Bacillaceae outside the Bacillus cereus group. Appl. Env. Microbiol. 68:3147–3151.
Crossref

 
 

Pugsley AP, Oudega B (1987). Methods for Studying Colicins and their Plasmids. In KD Hardy (Ed), Plasmids: A Practical Approach Oxford: IRL Press. pp 105–161.

 
 

Rozen S, Skaletsky HJ (2000). Primer 3 on the www for general users and for biologist programmers. In S Krawetz, S Misener (Eds.), Bioinformatic Methods and Protocols Totowa: Humana Press. pp 365–386.
Pubmed

 
 

Schlegelova J, Brychta J, Klimova E, Napravnikova E, Babak V (2003). The prevalence and resistance to antimicrobial agents of Bacillus cereus isolates from foodstuffs. Vet. Med. 48(11):331–338.

 
 

Shelburne CE, An FY, Dholpe V, Ramamoorthy A, Lopatin DE, Lantz MS (2007). The spectrum of antimicrobial activity of the 18 bacteriocin subtilosin A. J. Antimicrobial Chem. 59:297–300.
Crossref

 
 

Stein T, Düsterhus S, Stroh A, Entian KD (2004). Subtilosin production by two Bacillus subtilis subspecies and variance of the sbo-alb cluster. Appl. Env. Microbiol. 70:2349–2353.
Crossref

 
 

Sutyak KE, Wirawan RE, Aroutcheva AA, Chikindas ML (2008). Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J. Appl. Microbiol. 104:1067–1074.
Crossref

 
 

Yaouba A, Tatsadjieu NL, Jazet Dongmo PM, Etoa FX, Mbofung CM (2010). Antifungal properties of essential oils and some constituents to reduce foodborne pathogen. J. Yeast Fungal Res. 1(1):001–008.

 
 

Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, Shirata A (2001). Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology. 91:181–187.
Crossref

 
 

Zihler A, Le Blay G, de Wouters T, Lacroix C, Braegger CP, Lehner A, Tischler P, Rattei T, Hächler H, Stephan R (2009). In vitro inhibition activity of different bacteriocin-producing Escherichia coli against Salmonella strains isolated from clinical cases. Lett. Appl. Microbiol. 49:31–38.
Crossref