African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Full Length Research Paper

Evaluation of different fungi and bacteria strains for production of cellulases by submerged fermentation using sugarcane bagasse as carbon source: Effect of substrate concentration and cultivation temperature

Laura M. Pinotti
  • Laura M. Pinotti
  • Department of Engineering and Technology, Federal University of Espírito Santo, Rodovia BR 101 Norte Km 60, São Mateus, ES, Brazil.
  • Google Scholar
Larissa B. Paulino
  • Larissa B. Paulino
  • Department of Engineering and Technology, Federal University of Espírito Santo, Rodovia BR 101 Norte Km 60, São Mateus, ES, Brazil.
  • Google Scholar
Jacyele C. Agnezi
  • Jacyele C. Agnezi
  • Department of Engineering and Technology, Federal University of Espírito Santo, Rodovia BR 101 Norte Km 60, São Mateus, ES, Brazil.
  • Google Scholar
Patrícia A. dos Santos
  • Patrícia A. dos Santos
  • Department of Engineering and Technology, Federal University of Espírito Santo, Rodovia BR 101 Norte Km 60, São Mateus, ES, Brazil.
  • Google Scholar
Henrique N. L. da Silva
  • Henrique N. L. da Silva
  • Department of Engineering and Technology, Federal University of Espírito Santo, Rodovia BR 101 Norte Km 60, São Mateus, ES, Brazil.
  • Google Scholar
Julio P. Zavarise
  • Julio P. Zavarise
  • Department of Engineering and Technology, Federal University of Espírito Santo, Rodovia BR 101 Norte Km 60, São Mateus, ES, Brazil.
  • Google Scholar
Gabriella S. B. Salomão
  • Gabriella S. B. Salomão
  • Department of Engineering and Technology, Federal University of Espírito Santo, Rodovia BR 101 Norte Km 60, São Mateus, ES, Brazil.
  • Google Scholar
Paulo W. Tardioli
  • Paulo W. Tardioli
  • Postgraduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, Km 235, 13565-905 São Carlos, SP, Brazil.
  • Google Scholar


  •  Received: 20 July 2020
  •  Accepted: 24 August 2020
  •  Published: 30 September 2020

References

Acharya BK, Mohana S, Jog R, Divecha J, Madamwar D (2010). Utilization of anaerobically treated distillery spent wash for production of cellulases under solid-state fermentation. Journal of Environmental Management 91:2019-2027.
Crossref

 

Akinyele JB, Falade OE, Olaniyi OO (2014). Screening and optimization of culture conditions for cellulase production by Aspergillus niger nspr012 in submerged fermentation. Journal of Microbiology, Biotechnology and Food Sciences 4(3):189-193.
Crossref

 
 

Al-Gheethi AAS (2015). Recycling of sewage sludge as production medium for cellulase by a Bacillus megaterium strain. International Journal of Recycling of Organic Waste in Agriculture 4:105-119.
Crossref

 
 

Baraldo Junior A, Borges DG, Tardioli PW, Farinas CS (2014). Characterization of β-glucosidase produced by Aspergillus niger under solid-state fermentation and partially purified using MANAE-Agarose. Biotechnology Research International. 
Crossref

 
 

Behera BC, Sethi BK, Mishra RR, Dutta SK, Thatoi HN (2017). Microbial cellulases-Diversity & biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering Biotechnology 15:197-210.
Crossref

 
 

Bentil JA, Thygesen A, Mensah M, Lange L, Meyer AS (2018). Cellulase production by white-rot basidiomycetous fungi: solid-state versus submerged cultivation. Applied Microbiology and Biotechnology 102:5827-5839.
Crossref

 
 

Borges DG, Junior AB, Farinas CS, Giordano RDLC, Tardioli PW (2014). Enhanced saccharification of sugarcane bagasse using soluble cellulase supplemented with immobilized β-glucosidase. Bioresource Technology 167:206-213.
Crossref

 
 

Catelan TC, Pinotti LM (2019). Avanço das pesquisas envolvendo Aspergillus niger e bagaço da cana-de-açúcar como fonte de carbono visando à produção de celulases: Uma análise bibliométrica. Matéria (Rio J.) 24:2.
Crossref

 
 

Fernandes MLM (2007). Produção de lipases por fermentação no estado sólido e sua utilização em biocatálise. Ph.D. thesis. Brazil: Universidade Federal do Paraná.

 
 

Fernandes TG, López JA, Silva LA, Polizeli MTM, Silva DP, Ruzene DS, Carvalho MLS, Carvalho IF (2018). Prospecting of soybean hulls as an inducer carbon source for the cellulase production. Preparative Biochemistry and Biotechnology 48(8):743-749.
Crossref

 
 

Gautam RL, Naraian N (2020). Trichoderma, a Factory of Multipurpose Enzymes: Cloning of Enzymatic Genes. In: Hesham AL, Upadhyay R, Sharma G, Manoharachary C, Gupta V (eds) Fungal Biotechnology and Bioengineering 137-162. Fungal Biology. Springer, Cham. 
Crossref

 
 

Ghose TK (1987). Measurement of cellulase activities. Pure and Applied Chemistry 59(2):257-268.
Crossref

 
 

Hernández-Domínguez EM, Rios-Latorre RA, Álvarez-Cervantes J, Loera-Corral O, Román-Gutiérrez AD, Díaz-Godínez G, Mercado-Flores Y (2014). Xylanases, cellulases, and acid protease produced by Stenocarpella maydis grown in solid-state and submerged fermentation. Bioresources 9(2):2341-2358.
Crossref

 
 

Irfan M, Mushtaq Q, Tabssum F, Shakir HA, Qazi JI (2017). Carboxymethyl cellulase production optimization from newly isolated thermophilic Bacillus subtilis K‑18 for saccharification using response surface methodology AMB Express 7:29.
Crossref

 
 

Jasani H, Umretiya N, Dharajiya D (2016). Isolation, Optimization and Production of Cellulase by Aspergillus niger from agricultural waste. Journal of Pure and Applied Microbiology 10(2):1159-1166.

 
 

Jiménez-Leyva MF, Beltrán-Arredondo LI, Cervantes-Gámez R, Cervantes-Chávez J, López-Meyer M, Castro-Ochoa D (2017). Effect of CMC and MCC as Sole Carbon Sources on Cellulase Activity and eglS Gene Expression in Three Bacillus subtilis strains Isolated from corn stover. BioResources 12(1):1179-1189.
Crossref

 
 

Juturu V, Wu JC (2014). Microbial cellulases: engineering, production and applications. Renewable and Sustainable Energy Reviews 33:188-203.
Crossref

 
 

Menoncin S, Domingues NM, Freire DMG, Oliveira JV, Di Luccio M, Treichel H, de Oliveira D (2009). Immobilization of lipases produced by solid state fermentation from Penicillium verrucosum on hydrophobic supports. Ciência e Tecnologia de Alimentos 29(2):440-443.
Crossref

 
 

Lin J, Zhang X, Song B, Xue W, Su X, Chen X, Dong Z (2017). Improving cellulase production in submerged fermentation by the expression of a Vitreoscilla hemoglobin in Trichoderma reesei. AMB Express 7(203).
Crossref

 
 

Liu HQ, FengY, Zhao DQ, Jiang JX (2012). Evaluation of cellulases produced from four fungi cultured on furfural residues and microcrystalline cellulose. Biodegradation 23:465-472.
Crossref

 
 

Mandels M, Weber J (1969). The production of cellulases. Advances in Chemistry 95:391-414.
Crossref

 
 

Mesa L, Salvador CA, Herrera M, Carrazana DI, González E (2016). Cellulases by Penicillium sp. in different culture conditions. Bioethanol 2:84-93.
Crossref

 
 

Miller GL (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31:426-428.
Crossref

 
 

Mmango-Kaseke Z, Okaiyeto K, Nwodo UU (2016). Optimization of Cellulase and Xylanase Production by Micrococcus Species under Submerged Fermentation. Sustainability 8:1168.
Crossref

 
 

Nagar S, Kumar V (2010). Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. Journal of Industrial Microbiology and Biotechnology 37:71-83.
Crossref

 
 

Pandey AK, Edgard G, Negi S (2016). Optimization of concomitant production of cellulase and xylanase from Rhizopus oryzae SN5 through EVOP-factorial design technique and application in Sorghum Stover based bioethanol production. Renewable Energy 98:51-56.
Crossref

 
 

Rodríguez-Zúñiga UF, Farinas CS, Bertucci Neto V, Couri S, Crestana S (2011). Produção de celulases por Aspergillus niger por fermentação em estado sólido. Pesquisa Agropecuária Brasileira. 46(8):912-919.
Crossref

 
 

Salomão GSB, Agnezi JC, Paulino LB, Hencker LB, de Lira TS, Tardioli PW, Pinotti LM (2019). Production of cellulases by solid state fermentation using natural and pretreated sugarcane bagasse with different fungi. Biocatalysis and Agricultural Biotechnology 17:1-6.
Crossref

 
 

Santa-Rosa PS, Souza AL, Roque RA, Andrade EV, Astol S, Mota AJ, Nunes-Silva CG (2018). Production of thermostable β-glucosidase and CMCase by Penicillium sp. LMI01 isolated from the Amazon region. Electronic Journal of Biotechnology 31:84-92.
Crossref

 
 

Shahid ZH, Irfan M, Nadeem M, Syed Q (2016). Production, Purification, and Characterization of Carboxymethyl Cellulase from Novel Strain Bacillus megaterium. Environmental Progress Sustainable Energy 35(6):1741-1749.
Crossref

 
 

Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010). Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology 46:541-549.
Crossref

 
 

Singhania RR, Sustainability E, Patel AK, Thomas L, Giri BS (2015). Industrial Enzymes. In: Pandey A., Höfer R, Taherzadeh M, Nampoothiri K, Larroche C (eds.) Industrial biorefineries and White Biotechnology, pp. 473-497. Elsevier
Crossref

 
 

Vaid S, Bajaj BB (2017). Production of Ionic Liquid Tolerant Cellulase from Bacillus subtilis G2 Using Agroindustrial Residues with Application Potential for Saccharification of Biomass Under One Pot Consolidated Bioprocess. Waste and Biomass Valorization 8:949-964.
Crossref

 
 

Vasconcellos VM, Tardioli PW, Giordano RLC, Farinas CS (2015). Production efficiency versus thermostability of (hemi) cellulolytic enzymatic cocktails from different cultivation systems. Process Biochemistry 50:1701-1709.
Crossref

 
 

Vázquez-Montoya EL, Castro-Ochoa LD, Maldonado-Mendoza IE, Luna-Suárez S, Claudia Castro-Martínez C (2020). Moringa straw as cellulase production inducer and cellulolytic fungi source. Revista Argentina de Microbiología 52(1):4-12.
Crossref

 
 

Zanirun Z, Bahrin E K, Lai-Yee P, Hassan MA, Abd-Aziz S (2014). Effect of Physical and Chemical Properties of Oil Palm Empty Fruit Bunch, Decanter Cake and Sago Pith Residue on Cellulases Production by Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2. Applied Biochemistry and Biotechnology 172:423-435.
Crossref

 
 

Wang Z, Ong HX, Geng A (2012). Cellulase production and oil palm empty fruit bunch saccharification by a new isolate of Trichoderma koningii D-64. Process Biochemistry https://doi.org/10.1016/j.procbio.2012.07.001
Crossref

 
 

Wang S, Liu G, Yu J, Tian S, Huang B, Xing M (2013). RNA interference with carbon catabolite repression in Trichoderma koningii for enhancing cellulase production. Enzyme and Microbial Technology 53:104-109.
Crossref

 
 

Wang H, Kaur G, Pensupa N, Uisan K, Du C, Yang X, Lin CSK (2018). Textile waste valorization using submerged filamentous fungal fermentation. Process Safety and Environmental Protection 118:143-151.
Crossref